Синхронные двигатели широко применяются в машиностроении, энергетике, строительстве и металлургии благодаря своей эффективности, мощности и надежности. Однако регуляторы, которые обычно управляют параметрами работы таких двигателей, например, скоростью, не всегда обеспечивают высокое качество контроля. В результате эффективность двигателя снижается, растет потребление электроэнергии и износ деталей. Ученые ПНИПУ предложили решение этой проблемы: нечеткий регулятор, основанный на знаниях эксперта-человека, позволит более точно и стабильно управлять работой двигателя.
Исследование опубликовано в журнале «Электротехника». Разработка проведена в рамках программы стратегического академического лидерства «Приоритет 2030». В синхронном электродвигателе скорость работы ротора (вращающаяся часть) совпадает со скоростью вращения магнитного поля статора (неподвижная часть). Такие двигатели дороже и сложнее в эксплуатации – быстрее изнашиваются и требуют дополнительный источник постоянного тока, но при этом обладают большей мощностью, чем асинхронные, и менее чувствительны к скачкам напряжения.
Ученые ПНИПУ проанализировали работу системы управления синхронного двигателя с постоянными магнитами без датчика положения ротора, которая содержит регулятор скорости ротора и наблюдатель для оценки его текущей скорости. Они предложили заменить используемый в ней классический пропорционально-интегральный регулятор (ПИ-регулятор) скорости вращения ротора на нечеткий регулятор.
ПИ-регулятор – устройство с обратной связью для управления технологическими параметрами (скоростью, температурой, давлением и так далее) Чтобы пояснить принцип его работы, приведем пример. Допустим, ПИ-регулятор отвечает за положение регулирующего вентиля на трубе с горячей водой, при этом необходимо, чтобы вода была определенного градуса. Получив информацию от датчика о реальной температуре воды, регулятор решает, насколько приоткрыть вентиль, чтобы та достигла нужного значения.
Однако ПИ-регулятор слабо подходит для сложных систем, например, доменной печи, поскольку невозможно учесть все факторы, влияющие на их работу (меняющуюся нагрузку, температуру, качество смазки, износ деталей и другие) При этом квалифицированный оператор качественно управляет такими объектами, опираясь на показания приборов и накопленный опыт. В таком случае политехники предлагают заменить ПИ-регуляторы на нечеткие регуляторы, построенные на основе нечеткой логики. Что это значит? Нечеткий регулятор состоит из фаззификатора, блока правил и дефаззификатора.
Фаззификатор преобразует точные значения входных сигналов (например, значения скорости ротора) в нечеткие величины (очень высокая, высокая, очень низкая, низкая, норма). Блок правил содержит инструкции (если x, то y), с которыми регулятор соотносит полученные нечеткие величины, и определяет, какое управляющее воздействие ему применить (если скорость очень низкая, то подачу тока увеличить сильно). Дефаззификатор преобразует нечеткие решения (увеличить сильно) в точные значения управляющих воздействий (увеличить на х), которыми регулятор контролирует скорость ротора.
Инструкции для нечеткого регулятора основаны на знаниях опытных специалистов. При этом возможно сформировать любое количество инструкций и условий в них, что делает процесс управления гораздо более эффективным.
«ПИ-регуляторы чувствительны к изменениям параметров системы, недостаточно качественно реагируют на быстрые и сильные перепады нагрузки, это приводит к ошибкам в процессе управления, снижению эффективности работы всей системы. Применение нечеткого регулятора исключает эти недостатки», – рассказывает ассистент кафедры автоматики и телемеханики ПНИПУ Сергей Сторожев.
Чтобы убедиться в эффективности предложенного подхода, ученые Пермского Политеха смоделировали работу нечеткого регулятора скорости в синхронном двигателе при помощи специализированного ПО. Они исследовали его работу при разной нагрузке и изменяющихся параметрах двигателя (например, при перегреве, вибрациях, износе деталей).
«Результаты показали, что использование нечеткого регулятора улучшает основные показатели качества управления в обоих случаях. Например, перерегулирование (превышение необходимого уровня управляющего воздействия) в идеальных условиях сокращается с пяти до одного процента, а в условиях изменяющихся параметров двигателя – с 10 до двух процентов», – подводит итог доктор технических наук, заведующий кафедрой автоматики и телемеханики ПНИПУ Александр Южаков.
Разработанный учеными ПНИПУ подход представляет собой альтернативу стандартному способу управления синхронными двигателями с постоянными магнитами без датчика положения ротора. Он может применяться в двигателях беспилотников, электросамокатов, велосипедов, топливных и масляных насосов. Это позволит добиться более простого, точного и качественного управления их работой, повысить их эффективность, сократить потери электроэнергии, избежать ускоренного износа деталей. Как отмечают ученые, конструкторская и программная документация уже разработана и планируется к внедрению в 2024 году.