Ссылка на первую часть здесь
Более сложными задачами являются задачи со ступеньками. Самый простой способ для понимания их это опять же воспринимать движение по эскалатору как движение по воде.
Лодка идет по течению реки. Течение ей помогает? Да. А что значит что течение ей помогает? По сути что оно проходит какое-то расстояние за лодку. Значит расстояние которое пройдет лодка по течению, это то расстояние которое она сама пройдет, плюс расстояние которое пройдет за нее течение.
Теперь плывем в стоячей воде. Течение не помогает, и не мешает. Значит человек сам пройдет весь путь.
Плывем против течения. Течение мешает. Значит расстояние которое пройдет лодка будет равно расстояние которое долна была бы пройти лодка в стоячей воде, и то расстояние на которое отнесет ее назад течение.
Попробуем соединить эти утверждения в одно целое. Расстояние, которое пройдет лодка в стоячей воде, будет больше, чем расстояние по течению. Значит расстояние которое прошло течение за лодку можно узнать так: расстояние в стоячей воде минус расстояние пройденное по течению.
В то же время расстояние против течения будет больше, чем расстояние в стоячей воде. Если я хочу узнать на какое расстояние течение унесло лодку назад то я сделаю так: расстояние против течения - расстояние в стоячей воде.
Применим это к задачам.
Задача 1
Однажды Дмитрий Александрович опаздывал на работу. Для того чтобы наверстать время он побежал вниз по эскалатору метро. Спускаясь со скоростью 2 ступени в секунду он насчитал 140 ступеней. Спустя какое-то время ситуация повторилась. И Дмитрий Александрович бежал вниз уже со скоростью 3 ступеньки в секунду. В этот раз он насчитал 168 ступеней. Сколько ступеней придется пробежать Дмитрию Александровичу если эскалатор будет сломан?
Заполним таблицу, при этом в ней будем учитывать только 2 столбца. Скорость и количество ступеней, которое обозначим L.
I случай - Дмитрий Александрович бежит вниз со скоростью 2 ступени в секунду (лодка по течению). I I случай - со скоростью 3 ступеньки в секунду (лодка по течению). I I I случай - эскалатор будет сломан, то есть Дмитрий Александрович сам будет проходить все ступени эскалатора (лодка в стоячей воде) .
Для удобства обозначим количество ступенек на неподвижном эскалаторе за Х. Тогда таблица приобретает такой вид:
Теперь определимся чему равен путь эскалатора в первом случае. Дмитрий Александрович (Д.А.) идет по движению эскалатора, значит эскалатор ему помогает, и проходит часть пути за него. То есть чтобы узнать скорость эскалатора необходимо от количества ступенек при неподвижном эскалаторе отнять количество ступенек пройденных по направлению движения эскалатора.
Применим вот такую формулу: скорость человека будет относиться к скорости эскалатора, как расстояние пройденное человеком (количество ступенек), к расстоянию пройденному эскалатором.
Заполним эту формулу относительно первого случая.
И относительно второго случая.
А теперь объединим эти два условия в одну систему, и решим. сразу оговорюсь, что решать можно любым способом (сложения, подстановки), все зависит от ваших умений. Обычно 90% учеников владеют только способом подстановки, потому я решу именно так.
Такие уравнения удобно решать умножением крест накрест. То есть вторым шагом умножаем.
Затем выражаем из уравнений скорость эскалатора.
Скорость эскалатора что в первом случае, что во втором одинакова, потому приравниваем два уравнения друг к другу и решаем обычное уравнение.
Ответ: 280 ступеней.