Найти в Дзене
Репетитор IT mentor

Параметрическая касательная к окружности (задача за 9 класс)

Оглавление

Приветствую вас, друзья! В этой заметке подробно разберем задачу из ОГЭ по математике. Получается, что уровень сложности задачи: ~ 9 класс.

Задание

Прямая y  =  2•x + b касается окружности x²  +  y² =  5 в точке с положительной абсциссой. Определите координаты точки касания.

Решение:

В самом начале я привел рисунок, который описывает как может располагаться прямая и окружности (рисунок не подходит к нашей задаче, это сделано специально для того, чтобы бы вы подумали на начальном этапе).

Итак, прямая может:
1. Не иметь с окружностью общих точек (не пересекаться)
2. Иметь с окружностью одну общую точку (касаться окружности)
3. Иметь с окружностью две общих точкий (пересекать окружность, образуя хорду).

В нашей задаче нужно рассмотреть именно 2-й случай (обратите внимание на условие задачи).

Способ 1

Допустим, нам необходимо решить задачу со знаниями 9 класса. Найдем точку пересечения функций. Для этого решим совместную систему:

-2

Решение последнего уравнения определяет количество точек пересечения прямой с окружностью и координаты этих точек. Так как в задании сказано, что прямая является касательной, то квадратное уравнение должно давать одно решение, зависящее от параметра. То есть в нашем уравнении должен быть нулевой дискриминант. Учтем это:

-3

Если мы представим графическое решение, то поймем, что касание может происходит сверху и снизу. Нам же нужно выбрать ту точку, у которой будет положительное значение абсциссы.

Ответ: x₀ = 2 при значении параметра b = - 5

Способ 2

Если мы уже знакомы с производными, то можно написать уравнение для касательной к окружности. Анализ функций дает нам подсказку, что касание должно происходить в области, где x > 0 и y < 0, это значит, что функцию можем выразить явно. Это может понадобиться для дальнейшего нахождения производной этой функции. Производная в точке касания будет определять коэффициент наклона касательной.

-4

Данное уравнение совпадает с уравнением касательной в условии задачи. Поэтому, приравняв соответствующие коэффициенты, мы сможем найти как абсциссу касания, так и значения параметра:

-5

Выбираем положительное значение, получаем тот же ответ:

Ответ: x₀ = 2 при значении параметра b = - 5

Общий ответ: точка касания M(2; -1) при значение параметра b = -5

А теперь правильный график, иллюстрирующий касание параметрической прямой к окружности
А теперь правильный график, иллюстрирующий касание параметрической прямой к окружности

Понравилась заметка ? Поставьте лайк, подпишитесь на канал! Вам не сложно, а мне очень приятно :)

Если Вам нужен репетитор по физике, математике или информатике/программированию, Вы можете написать мне или в мою группу Репетитор IT mentor в VK
Библиотека с книгами для физиков, математиков и программистов
Репетитор IT mentor в telegram