Найти тему
InGenium

Новые транзисторы, солнечные панели, антисептические поверхности и электричество из тепла. По_мелочам #2 (№2 май 2024 г.)

Оглавление

Новые технологии шагают… семимиллиметровыми шажками. Это про те технологии, изобретения и открытия, про которых идёт речь в этом дайджесте. В этих выпусках мы не рассказываем о прорывных достижениях, меняющих наш мир и ломающих парадигмы. Мы говорим о том, что не так заметно, но постепенно, в совокупности и со временем может привести к по настоящему значимым достижениям.

В этом выпуске вы узнаете про новые транзисторы, которые всё меньше, про электричество из тепла при помощи нанотрубок, про антисептические поверхности и датчик движения пальцев, про новый алюминиевый сплав и метаповерхностный интерферометр. Приятного чтения!

Новые тонкопленочные транзисторы на основе дихалькогенидов переходных металлов

Инженеры-электронщики в последние годы пытаются разработать все более сложные транзисторы, которые можно продолжать уменьшать до невероятно маленьких размеров. Учитывая ограничения традиционных кремниевых полевых транзисторов, некоторые команды экспериментируют с альтернативными конструкциями на основе материалов с более высокой подвижностью электронов.

Дихалькогениды переходных металлов (TMD) являются одними из наиболее перспективных материалов для разработки масштабируемых полевых транзисторов благодаря их малым размерам и хорошей подвижности носителей. Одним из таких материалов является дисульфид молибдена (MoS2).

Исследователи из Института передовых технологий Samsung (SAIT) и Сеульского национального университета недавно продемонстрировали интеграцию транзисторов на основе MoS2 на пластине диаметром 200 мм. Их статья, опубликованная в журнале Nature Electronics, демонстрирует масштабируемость транзисторов на основе MoS2, подчеркивая их потенциал для будущей разработки более компактных и гибких устройств.

Команда сначала изготовила крупномасштабные массивы полевых транзисторов на основе MoS2 с использованием техники металлоорганического химического осаждения из паровой фазы (MOCVD). Им удалось устранить так называемый барьер Шоттки на границе раздела между материалом MoS2 и металлом, что повысило подвижность носителей в транзисторах.

Примечательно, что используемая ими стратегия изготовления совместима с текущими процессами, используемыми для производства электроники. Фактически, исследователи обрабатывали свои транзисторы на коммерческом предприятии, достигнув выхода годных транзисторов более 99,9%.

Гибкие термоэлектрические ткани на основе углеродных нанотрубок

С ростом популярности и областей применения Интернета вещей растёт потребность в устойчивых решениях для питания беспроводных датчиков и устройств Термоэлектрические генераторы, которые могут преобразовывать избыточное тепло в электричество, могут стать удачным решением. Представьте себе одежду, которая может считывать информацию о вашем теле и передавать её на ваш смартфон для мониторинга состояния здоровья, например. Носить и заряжать отдельный аккумулятор для такого девайся было бы неудобным решением. А вот если можно было бы использовать энергию тепла вашего тела, то было бы уже интереснее.

Исследовательская группа под руководством Масакадзу Накамуры из Научно-технологического института Нары в Японии работает над созданием гибких носимых термоэлектрических генераторов, которые вырабатывают электричество из тепла тела, вшивая наноматериалы, называемые углеродными нанотрубками (УНТ), в ткань.

-2

Эффективные термоэлектрические (ТЭ) материалы характеризуются высокой электропроводностью, обеспечивающей высокий электрический ток, и большим коэффициентом Зеебека, генерирующим напряжение за счет разницы температур. УНТ отвечают большинству этих требований, но их высокая теплопроводность ограничивает термоэлектрическую производительность.

Чтобы снизить теплопроводность, УНТ диспергируют в растворе, где их можно комбинировать с другими материалами. Эта дисперсия затем №вшивается” в УНТ-нити с помощью процесса мокрого прядения. Однако традиционные методы диспергирования часто переплетают нанометровые УНТ-волокна, что снижает их электропроводность и термоэлектрические характеристики.

Исследователи предложили новый метод диспергирования УНТ с использованием глицерина в качестве диспергента и полиоксиэтилена(50) стеариловый эфир в качестве ПАВ. Это позволило получить УНТ-нити с ровными пучками УНТ.

Ключом к высокой производительности является распутывание исходного хаотичного материала УНТ и увеличение степени ориентации УНТ при прядении из дисперсии. Предложенный новый подход обещает повысить термоэлектрические характеристики материалов на основе УНТ - от нитей до пленок и объемных структур.

Новый метод защиты поверхностей от бактерий без использования антисептиков и антибиотиков

Исследователи из Технологического института Джорджии разработали электрохимический процесс, который может предложить новый способ защиты поверхностей от бактерий без использования агрессивных веществ и антибиотиков, а значит не способствуя росту устойчивости бактерий к антибиотикам.

-3

Этот подход использует природные антибактериальные свойства меди и создает невероятно маленькие игольчатые структуры на поверхности нержавеющей стали, чтобы убивать вредные бактерии, такие как кишечная палочка и стафилококк. Это удобно, недорого и может сократить потребность в химикатах и антибиотиках в больницах, на кухнях и в других местах, где загрязнение поверхностей может привести к серьезным заболеваниям.

Анужа Трипати, ведущий автор исследования, и ее коллеги использовали двойной удар, который позволяет уничтожать как грамположительные, так и грамотрицательные. Сначала они разработали электрохимический метод для травления поверхности нержавеющей стали, создавая наноразмерные игольчатые структуры, которые могут прокалывать клеточные мембраны бактерий. Затем с помощью второго электрохимического процесса исследователи нанесли ионы меди на поверхность стали. Медь взаимодействует с клеточными мембранами и в конечном итоге компрометирует их.

Испытания показали, что эти двойные атаки привели к 97% сокращению грамотрицательной кишечной палочки и 99% сокращению грамположительного Стафилококка.

Нержавеющая сталь может использоваться для распространенных инструментов в медицинских учреждениях, которые легко загрязняются, таких как ножницы или пинцеты. Её можно также использовать для дверных ручек, перил лестниц и, возможно, даже раковин - мест, где нержавеющая сталь часто применяется, и бактерии на поверхности распространены, особенно в больницах или других общественных местах.

Сенсор для анализа движений пальцев

Мелкая моторика играет ключевую роль в когнитивных способностях человека, влияя на повседневную деятельность и развитие высокотехнологичной цивилизации. Однако объективная оценка этих навыков была сложной задачей. Традиционные методы, такие как видеокодирование, трудоемки и подвержены предвзятости кодировщиков. Существующие технологии, включая бесконтактный захват движений или устройства, прикрепленные к руке, имеют ограничения, особенно при оценке движений пальцев младенцев.

Новое устройство, разработанное командой профессора Хироки Сато из Технологического института Сибаура, использует гибкий тактильный сенсор на основе электрической импедансной томографии. Это позволяет точно измерять движения сжимания пальцев. Эксперименты с участием 12 человек показали высокую точность классификации - 79,1% для реконструированных изображений и 91,4% для векторов напряжения.

-4

Эти результаты имеют важные последствия. Они могут привести к созданию обучающих игрушек для развития мелкой моторики, а также помочь в медицинских исследованиях и реализации дистанционной медицинской помощи. В будущем команда планирует применить этот сенсор к объектам различной формы, чтобы расширить его применение, в том числе для оценки движений пальцев младенцев. Ну и про игровую индустрию никто не забыл - в играх контроллеры подобного типа могут привести к появлению принципиально новых игровых механик.

Алюминиевый сплав с улучшенной термической стабильностью для аккумуляторных батарей электромобилей

Исследовательская группа под руководством д-ра Хён-у Сона из Корейского института материаловедения разработала новый алюминиевый сплав для аккумуляторных батарей электромобилей, который значительно повышает термическую стабильность.

-5

Ученые выявили новый механизм, за счет которого наноструктуры внутри алюминиевых сплавов обеспечивают улучшенную термическую стабильность. Разработанный ими сплав продемонстрировал повышение термической стабильности до 140% по сравнению с материалами ведущих зарубежных компаний.

Существующие алюминиевые материалы для корпусов аккумуляторов электромобилей непрерывно ухудшаются из-за выделяемого тепла, что повышает риск аварий по мере старения автомобилей. Новый алюминиевый сплав может замедлить тепловое ухудшение корпусных материалов за счет введения различных примесных элементов в стандартный алюминиевый сплав 6000-й серии.

Исследователи расширили базу данных по термической стабильности алюминиевых сплавов, изучив влияние десятков примесных элементов с помощью современных методов анализа наноструктур. Это открывает новые направления для разработки алюминиевых сплавов с улучшенными характеристиками.

Ожидается, что технология повышения термической стабильности алюминиевых сплавов найдет применение не только в корпусах аккумуляторов электромобилей, но и в конструкционных материалах для сверхзвуковых самолетов. Данная разработка позволит сократить импорт и способствовать экспорту алюминиевых материалов для аккумуляторных батарей электромобилей.

Ультратонкий метаповерхностный интерферометр

Растущее число перспективных квантовых приложений использует оптические технологии, где фотоны переносят информацию со скоростью света и на большие расстояния. Многие из этих приложений требуют идентичных (неразличимых) фотонов, поскольку различия между фотонами могут приводить к ошибкам в данных и снижать надежность квантовых технологий.

Исследователи из Центра передового опыта ARC по трансформационным метаоптическим системам разработали и продемонстрировали новое устройство, использующее ультратонкую метаповерхность для проведения всех необходимых измерений за один проход. Это позволяет проводить анализ неразличимости фотонов в режиме реального времени.

-6

Ключевым преимуществом является то, что данный многопортовый интерферометр является одноэлементным, что не только уменьшает его размер, но и делает его ультрастабильным по сравнению с предыдущими многопортовыми интерферометрами в свободно-пространственной оптической схеме. Использование метаоптики также позволяет уменьшить размер, вес и энергопотребление устройства, а также снизить стоимость производства.

Успешные экспериментальные испытания показывают, что работа может быть далее развита для измерения неразличимости и других свойств фотонов, таких как орбитальный угловой момент. Это может стать основой для сверхкомпактных и энергоэффективных оптических элементов, особенно подходящих для портативных и спутниковых квантовых фотонных технологий.

Высокоэффективные тандемные солнечные элементы с использованием антимонида селена

Исследовательская группа впервые продемонстрировала концептуальный прототип тандемного солнечного элемента, использующего антимонид селена в качестве нижнего элемента и широкозонный органо-неорганический гибридный перовскитный материал в качестве верхнего элемента. Устройство достигло коэффициента преобразования энергии более 20%.

-7

Исследование показывает, что антимонид селена имеет большой потенциал для применения в качестве материала нижнего элемента в тандемных солнечных элементах. Ученые смогли оптимизировать структуру тандемного элемента, добившись высокой эффективности за счет использования двухслойного транспортного слоя электронов в нижнем элементе на основе антимонида селена. Это позволило получить коэффициент преобразования энергии более 20% для всего тандемного элемента, что выше, чем для независимых субэлементов.

Данная работа демонстрирует перспективность антимонида селена как поглощающего материала для нижнего элемента в тандемных солнечных элементах. Исследователи планируют в дальнейшем работать над созданием более интегрированных двухтерминальных тандемных солнечных элементов с использованием антимонида селена и улучшением их характеристик.

Новый метод переработки пластиковых отходов: от мусора к ценному сырью

Несмотря на усилия потребителей по сортировке и разделению вторсырья, большая часть пластиковых бутылок всё ещё оказывается на свалках. Стандартные методы переработки, включающие сортировку, измельчение и повторное производство, ограничены лишь первым и вторым типами пластика - в основном это бутылки из-под газировки, воды и молока.

Производство пластика в мире выросло с 2 миллионов тонн в 1950 году до 360 миллионов тонн в 2018 году, при этом около 50% этого пластика становится мусором после одноразового использования. К 2050 году, как прогнозируется, 12 миллиардов тонн пластиковых отходов будут загрязнять окружающую среду и свалки.

Чтобы повысить уровень переработки, Кевин Шуг, профессор аналитической химии Университета Техаса в Арлингтоне, работает над новыми способами сортировки и переработки смешанных пластиковых отходов. Он и его команда аспирантов и бакалавров провели исследование, опубликованное в журнале "Journal of Chromatography A".

-8

"Одним из перспективных методов химической переработки является пиролиз, - говорит Шуг. - При пиролизе пластик нагревается в бескислородной среде до тех пор, пока он не разложится на пиролизные масла. Эти масла во многом похожи на сырую нефть и могут быть переработаны в топливо, а также использованы в качестве сырья для производства новых пластиков".

В отличие от традиционной переработки, требующей сортировки и измельчения, пиролиз не ограничен определёнными типами пластика - он может перерабатывать их все. Однако пиролиз смешанных пластиковых отходов создаёт сложные смеси, которые производители должны тщательно изучать, чтобы избавиться от загрязняющих веществ, таких как сера и азот.

"Пиролиз становится всё более популярным, многие компании наращивают крупномасштабные химические операции по переработке, - отмечает Шуг. - Тем не менее, для характеристики пиролизных масел требуется разработка новых аналитических методов, таких как описанный в нашем исследовании".

Используя новый метод сверхкритической флюидной хроматографии, учёные смогли чётко дифференцировать масла, полученные из полиэтилена и полипропилена. Это лишь начало, но команда Шуга очень воодушевлена перспективами этой техники для анализа масел, полученных из различных пластиков и их смесей.

___________________________________________________________

Спасибо Вам за чтение, надеюсь Вам понравилась! Ставьте Ваши реакции, пишите комментарии, расскажите, какая новость вас больше всего заинтересовала. Не забывайте подписываться, если вы ещё не подписались, а также поддержите нас на Бусти, там будут эксклюзивные материалы и ранний доступ ко всем регулярным материала и роликам. Заранее спасибо!