Задачи о стрелках, биатлонистах, мишенях и артиллерийских системах.
Чтобы понять задумку автора презентации, я даю ссылку на видео.
1_1) Биатлонист 4 раза стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,6. Найдите вероятность того, что биатлонист первые 2 раза попал в мишени, а последние 2 раза промахнулся. Результат округлите до сотых.
2) Биатлонист 5 раз стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,8. Найдите вероятность того, что биатлонист первые 3 раза попал в мишени, а последние 2 раза промахнулся. Результат округлите до сотых.
Презентация https://disk.yandex.ru/d/EvhtuR2yOKrGig
Видео https://rutube.ru/video/b9767083d9ed0ff826e695b51336fac1/?r=wd
2_1) Стрелок в тире стреляет по мишени до тех пор, пока не поразит её. Известно, что он попадает в цель с вероятностью 0,2 при каждом отдельном выстреле. Сколько патронов нужно дать стрелку, чтобы он поразил цель с вероятностью не менее 0,4?
2) Стрелок в тире стреляет по мишени до тех пор, пока не поразит её. Известно, что он попадает в цель с вероятностью 0,1 при каждом отдельном выстреле. Сколько патронов нужно дать стрелку, чтобы он поразил цель с вероятностью не менее 0,4?
3) Стрелок в тире стреляет по мишени до тех пор, пока не поразит её. Известно, что он попадает в цель с вероятностью 0,7 при каждом отдельном выстреле. Сколько патронов нужно дать стрелку, чтобы он поразил цель с вероятностью не менее 0,95?
4) Стрелок в тире стреляет по мишени до тех пор, пока не поразит её. Известно, что он попадает в цель с вероятностью 0,4 при каждом отдельном выстреле. Сколько патронов нужно дать стрелку, чтобы он поразил цель с вероятностью не менее 0,8?
5) Стрелок в тире стреляет по мишени до тех пор, пока не поразит её. Известно, что он попадает в цель с вероятностью 0,4 при каждом отдельном выстреле. Сколько патронов нужно дать стрелку, чтобы он поразил цель с вероятностью не менее 0,9?
Презентация https://disk.yandex.ru/i/565Rc73GTXngrA
Видео https://rutube.ru/video/4ef3bc48662d0e5b0e77907d7d83a721/?r=wd
3_1). При артиллерийской стрельбе автоматическая система делает выстрел по цели. Если цель не уничтожена, то система делает повторный выстрел. Выстрелы повторяются до тех пор, пока цель не будет уничтожена. Вероятность уничтожения некоторой цели при первом выстреле равна 0,3, а при каждом последующем – 0,6. Сколько выстрелов потребуется для того, чтобы вероятность уничтожения цели была не менее 0,97?
2). При артиллерийской стрельбе автоматическая система делает выстрел по цели. Если цель не уничтожена, то система делает повторный выстрел. Выстрелы повторяются до тех пор, пока цель не будет уничтожена. Вероятность уничтожения некоторой цели при первом выстреле равна 0,3, а при каждом последующем – 0,5. Сколько выстрелов потребуется для того, чтобы вероятность уничтожения цели была не менее 0,97?
Презентация https://disk.yandex.ru/d/Ik9MhbaTRRZ-fQ
Видео https://rutube.ru/video/587d4a46aa4e533319ce769456efdd46/
4_1) Стрелок стреляет по пяти одинаковым мишеням. На каждую мишень даётся не более двух выстрелов. Известно, что вероятность поразить мишень каждым отдельным выстрелом равна 0,8. Во сколько раз вероятность события «стрелок поразит ровно четыре мишени» больше вероятности события «стрелок поразит ровно три мишени»?
2) Стрелок стреляет по пяти одинаковым мишеням. На каждую мишень даётся не более двух выстрелов. Известно, что вероятность поразить мишень каждым отдельным выстрелом равна 0,5. Найдите отношение вероятностей событий «стрелок поразит ровно пять мишеней» и «стрелок поразит ровно три мишени»?
3) Стрелок стреляет по пяти одинаковым мишеням. На каждую мишень даётся не более двух выстрелов. Известно, что вероятность поразить мишень каждым отдельным выстрелом равна 0,6. Во сколько раз вероятность события «стрелок поразит ровно три мишени» больше вероятности события «стрелок поразит ровно две мишени»?
Презентация https://disk.yandex.ru/d/XBa3fi4kyHO3Og
Видео https://rutube.ru/video/682d1a868c4cce59da83341d0207e4ed/?r=wd
Задачи на вероятность и презентации для уроков_1 https://dzen.ru/a/Y9ETKrYdmWiPzn-E?share_to=link
Задачи на вероятность и презентации для уроков_2 https://dzen.ru/a/ZP1iCE9h1m2Tw43f?share_to=link
Задачи на вероятность и презентации для уроков_4
https://dzen.ru/a/ZXwXRErWvDgOEiva?share_to=link
© Презентации PowerPoint 2003. Е. М. Савченко, 2023