Найти в Дзене

Всё про векторы на ЕГЭ математика профильный уровень

Оглавление

Тема векторы изучается в начале 9 класса. Все темы, представленные в этой статье подойдут для изучения в 9, 10, 11 классе. В 11 классе проходится тема векторы, но уже в пространстве. Сохраняйте себе шпаргалки, чтобы не потерять.

Подпишись на тг канал, там больше полезного: https://t.me/tatianik_math

Вектор. Основные определения.

  1. Вектор — направленный отрезок.
  2. Нулевой вектор — точка на плоскости.
  3. Длина или модуль вектора — длина отрезка.
  4. Коллинеарные векторы — векторы, которые лежат на одной прямой или на параллельных прямых.
  5. Сонаправленные векторы — коллинеарны и направлены в одну сторону.
  6. Противоположно направленные векторы — коллинеарны и направлены в разные стороны.
  7. Равные векторы — сонаправлены и равны по длине.
Шпаргалка на основные определения вектора
Шпаргалка на основные определения вектора

Сложение и вычитание векторов. Умножение вектора на число.

  • Правило треугольника. Чтобы сложить два вектора, нужно соединить конец первого и начало второго (рис.1 в шпаргалке), суммарный вектор будет направлен из начала первого вектора в конец второго.
  • Правило параллелограмма. Чтобы сложить два вектора, нужно соединить их начала, достроить на данных векторах параллелограмм, диагональ параллелограмма будет суммой векторов (рис.2 в шпаргалке).
  • Правило многоугольника. Поочерёдно соединяй конец первого вектора с началом второго, пока не получится некий многоугольник, суммарный вектор будет направлен из начала первого в конец последнего (рис. 3 в шпаргалке).
Шпаргалка. Действия с векторами.
Шпаргалка. Действия с векторами.

Отрицательный вектор — противоположно направленный и равный по длине вектор.

  • Чтобы вычесть два вектора, нужно к положительному вектору прибавить противоположно направленный отрицательный вектор.
  • При умножении вектора на число k, получается вектор, который в k раз отличается по длине от первоначального.

Координаты вектора.

Координаты вектора — это длина проекции вектора на соответствующую ось.

  • Чтобы найти координаты вектора нужно из координаты конца вектора вычесть координату начала вектора.
Шпаргалка. Координаты вектора. Операции над векторами.
Шпаргалка. Координаты вектора. Операции над векторами.

Операции над векторами.

  • Чтобы найти координаты суммы векторов a(x₁;y₁) и b(x₂;y₂), нужно сложить их координаты a+b(x₁+x₂ ; y₁+y₂).
  • Чтобы найти координаты разности векторов a(x₁;y₁) и b(x₂;y₂), нужно вычесть их координаты a-b(x₁-x₂ ; y₁-y₂).

Длина вектора.

Длина вектора — квадратный корень из суммы квадратов координат вектора.

Шпаргалка. Длина вектора.
Шпаргалка. Длина вектора.

Скалярное произведение векторов.

  • Чтобы скалярно перемножить два вектора, нужно перемножить их длины и умножить на косинус угла между ними.
  • Чтобы скалярно перемножить два вектора, нужно найти сумму произведений их координат.
Шпаргалка. Скалярное произведение.
Шпаргалка. Скалярное произведение.
Скачать pdf файл со всеми шпаргалками можно в моём тг канале: https://t.me/tatianik_math/487

Все прототипы ЕГЭ №2 на векторы с сайта ФИПИ

-7
-8
-9
-10
-11
-12
-13
-14

Если данная статья была вам полезна, пожалуйста, поставьте лайк и подпишитесь.