Найти тему

Микроволновые разряды помогут управлять летательными аппаратами со сверхзвуковыми скоростями

Источник: ресурс МК
Источник: ресурс МК

Физики и механики разработали теоретическую модель, описывающую процесс формирования нитевидных микроволновых разрядов в газах. В этом случае газ нагревается дотемператур порядка 830°С и выше, и в нем формируется большое количество заряженных и возбужденных частиц. Это явление можно использовать в аэродинамике и космонавтике, чтобы воздействовать на потоки газа вблизи летательных аппаратов и тем самым управлять полетом, поскольку эти структуры влияют на скорость и траекторию движения аппарата. Результаты исследования, поддержанного грантом Российского научного фонда (РНФ), опубликованы в журнале Plasma Sources Science and Technology.

Вблизи летательных аппаратов, движущихся со сверхзвуковой скоростью, например, спускаемых на поверхность Земли или других планет, возникают зоны точечного нагрева и изменения плотности газа, которые могут влиять на направление и скорость движения объекта. Поэтому, чтобы контролировать движение аппарата, потоками нагретого газа нужно уметь управлять. Это можно делать с помощью плазменных структур —заряженных газовых областей, — сформированных с помощью сверхвысокочастотных (СВЧ) разрядов на некотором расстоянии от поверхности летательного аппарата.

Научные группы из разных стран пытаются получить оптимальные режимы СВЧ-разрядов, при которых воздействие на сверхзвуковые потоки газа было бы максимально эффективным. Существует два основных режима СВЧ-разряда — диффузный и нитевидный. В первом случае заряженные частицы распределены в виде облака, а во втором — стягиваются в тонкую нить. Исследования показали, что именно во втором режиме СВЧ-разряд приводит к максимальному нагреву в области формирования разряда и к снижению плотности газа перед летательным аппаратом, что облегчает его движение.

Результат моделирования: распределение электрического поля в СВЧ-антенне. Источник: Saifutdinov and Kustova / Plasma Sources Science and Technology, 2023
Результат моделирования: распределение электрического поля в СВЧ-антенне. Источник: Saifutdinov and Kustova / Plasma Sources Science and Technology, 2023

Ученые из Санкт-Петербургского государственного университета (Санкт-Петербург) и из Казанского национального исследовательского технического университета имени А. Н. Туполева-КАИ (Казань) разработали теоретическую модель, описывающую формирование плазмы СВЧ-разрядов в молекулярных газах. В частности, авторы исследовали переход из диффузной формы разряда в нитевидную в азоте. Азот был выбран в качестве плазмообразующего газа, поскольку это один из основных компонентов воздуха.

При построении модели авторы использовали систему большого числа математических уравнений, которые описывают все основные параметры разряда в газе. Так, в расчетах учитывались взаимодействия между молекулами газа, параметры электромагнитного поля, изменения плотности и температуры газа в области формирования разряда.

Моделирование показало, что диффузный разряд сначала вытягивается в виде «облака» заряженных и возбужденных частиц, а затем переходит в форму нитевидного плазмоида — более плотного «сгустка». При таком переходе резко возрастает концентрация заряженных частиц преимущественно вдоль центральной оси плазмоида.

Согласно модели, по мере роста плазмоида его температура увеличивается от 185°С до 830°С за 10-15 микросекунд. Это объясняется тем, что при взаимодействии возбужденных частиц азота выделяется большое количество энергии, которая используется для нагрева газа, снижая его плотность.

Результат моделирования: распределение концентраций заряженных частиц и температуры газа в СВЧ-разряде в различные моменты времени, демонстрирующие переход от диффузной формы в нитевидную. Источник: Saifutdinov and Kustova / Plasma Sources Science and Technology, 2023
Результат моделирования: распределение концентраций заряженных частиц и температуры газа в СВЧ-разряде в различные моменты времени, демонстрирующие переход от диффузной формы в нитевидную. Источник: Saifutdinov and Kustova / Plasma Sources Science and Technology, 2023

Дополнительно ученые исследовали, как на формирование разряда влияют примеси кислорода — еще одного важного компонента атмосферного воздуха. Оказалось, что в этом случае газ в области формирования разряда нагревается примерно на 4 микросекунды быстрее, чем в чистом азоте. Это объясняется более интенсивным выделением энергии при взаимодействии заряженных частиц азота и молекул кислорода.

В итоге авторам удалось описать процесс формирования СВЧ-разрядов, а также изменения, которые происходят в газе при возникновении в нем нитевидного разряда. Все полученные результаты помогут в разработке так называемых плазменных актуаторов —устройств для управления газовыми потоками у поверхности летательных и спускаемых космических аппаратов.

«Предложенная модель интересна как с фундаментальной точки зрения, поскольку позволяет описать, как меняются параметры СВЧ-разрядов, и воспроизвести их различные формы, так и с прикладной, потому что помогает прогнозировать оптимальные условия для снижения плотности газа в сверхзвуковых потоках. Это даст возможность управлять скоростью и направлением движения летательных аппаратов, а значит, снизить вероятность их крушения. В будущем мы планируем дополнить предложенную модель, учтя в ней движение частиц газа, содержащего молекулы кислорода. Это позволит точнее описать поведение разрядов в воздухе», — рассказывает участник проекта, поддержанного грантом РНФ, Алмаз Сайфутдинов, доктор физико-математических наук, доцент кафедры общей физики Казанского национального исследовательского технического университета имени А. Н. Туполева-КА

Наука
7 млн интересуются