Найти в Дзене

Затухающие колебания

Для школьников.

Во всех колебательных системах, при выводе их из положения равновесия, кроме возвращающей силы присутствуют силы трения или силы сопротивления, препятствующие их колебательным движениям. Поэтому полная энергия колебательной системы, расходуемая на работу против сил трения (сопротивления), уменьшается, колебания затухают и прекращаются.

-2

На рисунке слева показан график зависимости смещения колеблющейся точки от положения равновесия от времени для затухающего колебания. Пунктирной линией изображено изменение амплитуды затухающего колебания.

Быстрота затухания определяется величиной силы сопротивления. Если сила сопротивления очень большая, то колебания прекращаются после первого прохождения через положение равновесия (нижняя кривая рисунка справа) или даже до первого перехода через положение равновесия (верхняя кривая рисунка справа). Такое движение колеблющегося тела называется апериодическим.

Уравнение, описывающее затухающее колебание, имеет вид:

-3

Здесь

-4

- коэффициент затухания, зависящий от силы сопротивления, которая при малых скоростях пропорциональна скорости.

Выражение для амплитуды затухающих колебаний имеет вид:

-5

где А (с индексом ноль) - амплитуда в начальный момент времени.

Строго затухающее колебание не является периодическим, но если затухание невелико, то можно говорить о периоде.

Период затухающих колебаний зависит от силы сопротивления и определяется формулой:

-6

Здесь буквой "омега"

-7

обозначена круговая частота затухающего колебания, а буквой

круговая частота гармонического колебания.

Чем больше сила сопротивления, тем больше коэффициент затухания, тем быстрее уменьшается амплитуда А и тем больше период затухания Т.

При очень малом трении, когда коэффициент затухания очень мал, период затухающего колебания близок к периоду незатухающего свободного колебания.

На практике быстроту затухания часто характеризуют логарифмическим декрементом затухания, обозначаемым буквой "лямбда"

Логарифмический декремент затухания равен натуральному логарифму отношения двух последовательных амплитуд, отстоящих друг от друга за период времени Т:

-9

Коэффициент затухания и логарифмический декремент затухания связаны между собой зависимостью:

-10

Задача.

Логарифмический декремент затухания маятника равен 0,02. Во сколько раз k уменьшится амплитуда маятника после n = 50 полных колебаний? Считать, что период затухающих колебаний близок к периоду свободных незатухающих колебаний.

Решение. Амплитуда затухающего колебания изменяется по закону:

-11
-12

По условию задачи время 50 колебаний:

-13

Подставив два последних уравнения в уравнение амплитуды затухающего колебания, получим

-14

Тогда амплитуда после n = 50 колебаний уменьшится в k раз:

-15

Здесь е - основание натурального логарифма (е = 2,71828).

Ответ: после совершения 50 колебаний амплитуда уменьшилась в е раз. (Время, в течение которого амплитуда колебаний уменьшается в е раз, называется временем затухания).

На практике в одних случаях надо уменьшать затухание колебаний (например, при работе балансира механических часов), в других случаях, наоборот, увеличивать (например, надо чтобы стрелка электроизмерительных приборов быстро останавливалась).

Для этого в электроизмерительном приборе используется металлическая пластинка, соединённая со стрелкой прибора, в которой при её движении между полюсами электромагнита возникают вихревые токи, тормозящие движение пластинки.

-16

Приведём задачу на затухающие колебания, на переход энергии колеблющейся системы в работу по преодолению сил трения.

-17

Интересен тот факт, что небольшие силы трения мало влияют на период колебаний, тогда как на амплитуду колебаний они влияют гораздо больше. Этот факт используется в работе маятниковых часов.

Ещё Галилеем было сказано о возможности использования маятника в часах. Первые часы с маятником были созданы в 1673 году Гюйгенсом.

Таким образом, все реальные свободные колебания являются затухающими. Но при малых силах трения (сопротивления) колебания в течение достаточно долгого промежутка времени остаются близкими к гармоническим и тогда период затухающих колебаний можно считать равным периоду свободных незатухающих колебаний.

Быстрота затухания характеризуется коэффициентом затухания, логарифмическим декрементом затухания. Коэффициент затухания - это величина, обратная времени, в течении которого амплитуда колебаний уменьшается в е раз.

https://yandex.ru/video/preview/?text=%D0%B4%D0%B5%D0%BC%D0%BE%D0%BD%D1%81%D1%82%D1%80%D0%B0%D1%86%D0%B8%D1%8F%20%D0%B7%D0%B0%D1%82%D1%83%D1%85%D0%B0%D1%8E%D1%89%D0%B8%D0%B5%20%D0%BA%D0%BE%D0%BB%D0%B5%D0%B1%D0%B0%D0%BD%D0%B8%D1%8F&path=wizard&parent-reqid=1638616551229540-1048262997957332495-sas3-0841-245-sas-l7-balancer-8080-BAL-1765&wiz_type=vital&filmId=7663491726844988663

К.В. Рулёва, к. ф.-м. н., доцент. Подписывайтесь на канал. Ставьте лайки. Пишите комментарии. Спасибо.

Предыдущая запись: Сложение гармонических колебаний.

Следующая запись: Вынужденные колебания. Резонанс.

Ссылки на занятия до электростатики даны в Занятии 1 .

Ссылки на занятия (статьи), начиная с электростатики, даны в конце Занятия 45 .

Ссылки на занятия (статьи), начиная с теплового действия тока, даны в конце Занятия 5 8.

Ссылки на занятия, начиная с переменного тока, даны в конце Занятия 70 .

готово