Предлагаю вам фальшивый признак параллелограмма и его доказательство. Проверьте свою внимательность и найдите, где в доказательстве ошибка.
«Признак» параллелограмма: если в четырехугольнике две противоположные стороны равны и два противоположных угла равны, то такой четырехугольник является параллелограммом.
Рассмотрим четырехугольник АВСD, в котором АВ=CD и ∠А=∠С. Докажем, что этот четырехугольник является параллелограммом.
Проведем высоты ВЕ и DF. Треугольники АВЕ и CDF равны по гипотенузе и острому углу. Следовательно, ВЕ=DF и АЕ=FC.
Проведем диагональ ВD. Рассмотрим прямоугольные треугольники ВDЕ и ВDF. Они равны по катету и гипотенузе. Следовательно, ВF=DЕ.
Так как АЕ=FC и ВF=DЕ, то АD=ВС. Значит, в четырехугольнике АВСD противоположные стороны равны и он является параллелограммом.
Ну что, где ошибка?