Найти тему
N + 1

Как устроен и чем печатает российский магнитный биопринтер

В октябре 2018 года на Международную космическую станцию отправился магнитный биопринтер, чтобы в условиях невесомости изготовить несколько конструктов щитовидки и хрящей. Казалось бы, кого сегодня может удивить 3D-печать: ездит туда-сюда печатающая головка и слой за слоем аккуратно превращает трехмерную модель в осязаемый объект. Увы, послойное моделирование годится только для Земли, а стоит попасть в невесомость, как эта технология становится практически бесполезной. Причем неважно, чем вы печатаете: пластиком, живыми клетками, глиной, шоколадом, чаем или даже стеклом, — ваши чернила, скорее всего, соберутся в единый ком, висящий на экструдере.

Чтобы понять, как же все-таки возможна трехмерная биопечать в условиях микрогравитации, мы отправились в 3D Bioprinting Solutions — это дочерняя компания всем известной «Инвитро», и именно здесь создан «Орган.Авт» — устройство, которое уже этой осенью отправится на МКС и станет первым космическим магнитным биопринтером.

3D Bioprinting Solutions в 2013 году основал Александр Островский, владелец “Инвитро”. Компания специализируется на разработке технологий трехмерной биопечати и в будущем планирует дойти до испытаний in situ — в буквальном смысле чинить поврежденные ткани прямо в живом организме.


Стоит сразу оговориться, что речь все-таки еще не идет о печати полноценных органов — у них зачастую очень сложная структура и технологически до такого уровня мы пока не дошли. Вместо этого современный 3D-биопринтер создает конструкт — фактически, это объект из клеток одного типа, которые какое-то время живут единым «куском» и даже работают. Конструкты подходят для того, чтобы отрабатывать технологии создания многоклеточных объектов и изучать, как себя ведут отдельные клетки.

Первый принтер, созданный специалистами 3D Bioprinting Solutions, назывался FABION — это устройство, которое выглядит, как обычный 3D-принтер, но на самом деле он гораздо сложнее и может печатать гидрогелем и тканевыми сфероидами, о которых мы расскажем чуть ниже. С помощью этого принтера исследователи напечатали конструкт щитовидной железы мыши, который потом подсадили животному — конструкт прижился и даже начал работать как настоящая щитовидка.

Демонстрационная печать модели щитовидной железы цветным гелем

Артемий Григорьев
Демонстрационная печать модели щитовидной железы цветным гелем Артемий Григорьев

Несмотря на успешный эксперимент, у такого подхода есть и минусы — печать все-таки идет не только клетками, в качестве несущей массы используется гидрогель, что не всегда удобно. К тому же использование дополнительного вещества в качестве основы для печати снижает концентрацию клеток в конструкте. В этом случае ставшее уже «лишним» вещество после печати просто мешает клеточной культуре — клетки хуже взаимодействуют друг с другом.

Здесь на помощь ученым пришли тканевые сфероиды — это конгломераты клеток диаметром в пару сотен микрометров, которые в таком виде можно использовать в качестве сырья как для аддитивного (послойного) производства, так и для формативного — когда объект формируется сразу со всех сторон.

Чтобы получить тканевые сфероиды, клетки выращивают не в чашках Петри, а в специальных планшетах, в которых расположены полусферические ячейки с неадгезивной поверхностью. Клетки, разрастаясь в таких лунках, не могут расти просто плоским блином и в итоге налипают друг на друга, превращаясь в небольшие комочки, в каждом из которых от четырех до восьми тысяч живых клеток.

Тканевыми сфероидами сегодня печатают всего несколько принтеров в мире, и одним из них стал FABION 2 — доработанная версия первого принтера 3D Bioprinting Solutions. Чтобы сфероиды не слипались внутри принтера и не забивали сопло, была разработана специальная турникетная печатающая головка, которая физически преграждает путь лишним сфероидам и позволяет подавать их на выход поштучно.

FABION 2 до сих пор используется в лаборатории, в нем установлено шесть печатающих головок (одна сфероидная, два шприца для печати гидрогелями, спрей для полимеризации и префлоу-головка для сложных материалов, которые нужно смешивать из составляющих непосредственно при печати). Тем не менее, это по-прежнему аддитивная технология производства — конструкт печатается послойно, что подходит только для привычных нам земных условий (конечно, на самом деле есть способы реализовать послойную печать в невесомости, но они приводят к усложнению процесса печати).

Упругость тканевых сфероидов проверяют специальными «тисками», которые контролируемо сжимают шарик из клеток 

Артемий Григорьев
Упругость тканевых сфероидов проверяют специальными «тисками», которые контролируемо сжимают шарик из клеток Артемий Григорьев

«Орган.Авт» — именно так называется устройство, которое помогло 3D Bioprinting Solutions перейти от аддитивных технологий к формативным. Это принципиально другой подход к созданию объектов из живых клеток — не нужны печатающие головки и поддерживающие конструкции вокруг создаваемого объекта. 3D-биопринтер не наращивает конструкт послойно, а формирует его из тканевых сфероидов сразу со всех сторон с помощью технологии магнитной левитации. По сути, это коробка с магнитами, в которую вставляется кювета с тканевыми сфероидами, плавающими в гидрогеле. Перед началом работы в кювету впрыскивается парамагнетик, который обычно используется как контраст в магнитно-резонансной томографии, после чего включаются магниты и парамагнетик за 30 секунд выталкивает все сфероиды в центр кюветы.

Первый прототип «Орган.Авт» сам был напечатан из пластика на обычном 3D-принтере и рассчитан всего на одну кювету. На МКС же отправится последняя версия биопринтера, которая работает с шестью кюветами одновременно, в нем предусмотрена подсветка и даже есть смотровые окошки, в которые вставляются камеры GoPro.

В июле представители 3D Bioprinting Solutions провели в Звездном городке обучение космонавтов в ходе двух лекций и двух практических занятий, а уже 11 октября «Орган.Авт» и набор экспериментальных кювет отправятся на орбиту. Внутри кювет будут тканевые сфероиды, зафиксированные с помощью специального геля, который застывает при нагреве и разжижается при комнатной температуре.

«Органавт» на фоне ранних прототипов (слева) и акустического левитатора (справа)

Артемий Григорьев
«Органавт» на фоне ранних прототипов (слева) и акустического левитатора (справа) Артемий Григорьев

На станции космонавты с помощью «Орган.Авт» сформируют конструкты хряща и щитовидной железы — после включения биопринтера его поставят в инкубатор, чтобы стянутые в центр сфероиды срослись друг с другом и дозрели до состояния единого конструкта. Затем в кюветы впрыснут формальдегид и в конце октября отправят обратно на Землю для изучения в лаборатории. Сам «Орган.Авт» останется на МКС, и его в дальнейшем смогут использовать для своих экспериментов и другие исследовательские организации.

Специалисты 3D Bioprinting Solutions также экспериментируют с акустической левитацией и в перспективе планируют совместить эту технологию с магнитной биопечатью 

Артемий Григорьев
Специалисты 3D Bioprinting Solutions также экспериментируют с акустической левитацией и в перспективе планируют совместить эту технологию с магнитной биопечатью Артемий Григорьев

Печать в космосе — только начало. В 3D Bioprinting Solutions уже работают над магнитно-акустическим биопринтером. В таком принтере магниты отвечают за одну ось, а акустические излучатели — за две другие, при этом форма кюветы влияет на акустическое воздействие, но это решается калибровкой системы. Благодаря такой гибридной технологии формируемый ком можно сдвигать в сторону, и принтер вместо единой «тефтели» может формировать более сложные структуры.

Пока что у разработчиков получается только вытянутый отрезок из тканевых сфероидов, но в перспективе отрезок можно будет замкнуть в кольцо, а потом из таких колец формировать действительно сложные структуры, например кровеносные сосуды.

Не лишним будет упомянуть, что кроме печати в условиях невесомости в лаборатории работают и по другим направлениям. Одно из самых примечательных — печать in situ, то есть прямо в живом организме. Предполагается, что в будущем можно будет чинить пострадавший орган прямо в живом организме с помощью роборуки, на конце которой установлена печатающая тканевыми сфероидами головка.

Пока что это только идея, реализованная в общем виде на базе манипулятора FANUC, но в будущем исследователи планируют доработать технологию и протестировать ремонт тканей in situ — например, смоделировать хрящевой дефект у живого барана и попытаться его залатать хондроцитами.

В общем, если эксперименты в космосе и на Земле увенчаются успехом, то в будущем космонавты смогут и коленный сустав починить, и новую щитовидную железу напечатать, а то и бургер съесть — для производства мяса формативная 3D-печать тоже отлично подходит.

Тестовая печать коллагеном на биопринтере FABION 

3D Bioprinting Solutions
Тестовая печать коллагеном на биопринтере FABION 3D Bioprinting Solutions

Николай Воронцов