Найти тему
Философские байки

Апория Зенона «Стадион»: физическая дискретность и математическая непрерывность

Гоплитодром — бег со щитом.  Добавлен в Олимпийские состязания на 65-й Олимпиаде в 520 до н. э. Чернофигурная вазопись
Гоплитодром — бег со щитом. Добавлен в Олимпийские состязания на 65-й Олимпиаде в 520 до н. э. Чернофигурная вазопись

Одна из оригинальных апорий Зенона, посвященных движению, называется Стадий, Стадион или Ристалище.

Формулировка задачи

На стадионе находится три группы спортсменов. Первая группа (А) не двигается, вторая (В) двигается вправо, а третья (Г) — влево. Вторая группа и третья движутся хоть и в разных направлениях, но с одинаковой скоростью.

Пусть спортсмены внутри каждой группы станут максимально плотно, так, чтобы между ними остался один-единственный неделимый квант пространства.

Какое расстояние спортсмены из группы Б пройдут за один неделимый квант времени? Зенон говорит, что за один квант времени спортсмены пройдут неделимый квант пространства. Ведь меньше они пройти не могут, да и больше тоже: если они пройдут два кванта пространства, то каждый квант пространства они пройдут за 1/2 кванта времени.

Но спортсмены из группы Г тоже идут с такой же скоростью. Поэтому за этот же квант времени спортсмены из группы В сдвинутся относительно спортсменов из группы Г на два кванта пространства. Таким образом, один квант пространства окажется пройденным за 1/2 кванта времени.

Получается, что неделимый квант времени всё же окажется делимым.

изображение с просторов интернета
изображение с просторов интернета

В чём подвох?

Подвох, как обычно, в самих посылках апории.

В этой апории Зенон берёт три утверждения за основу:

1. существует неделимый квант времени;

2. существует неделимый квант пространства;

3. Любой отрезок можно представить как сумму его частей.

В общем-то, если отринуть любое из этих утверждений (чего и добивался Зенон), апории не получится.

А вот что пишет Джеральд Уитроу (Gerald James Whitrow) в книге «Естественная философия времени» по поводу этой апории:

Джеральд Уитроу
Джеральд Уитроу
«...даже Зенон при обсуждении апории «Стадий» молчаливо обращался к представлению о непрерывности, хотя данная апория основана на предположении об атомарном характере пространства и времени. Логически непротиворечивое решение этой проблемы должно опираться на представление о последовательных дискретных состояниях, между которыми нельзя вставить никакие другие состояния... »

Иными словами, если квант времени по условиям задачи неделим, то и дробить его на части нельзя.

« Поэтому понятия физической дискретности и математической непрерывности, когда обсуждаются все тонкости, связанные с проблемами, поставленными Зеноном, следует строго различать».