Найти тему

Регуляция экспрессии генов. Геномный уровень организации наследственного материала.

Во многих случаях дифференцировка происходит путем регуляции транскрипции мРНК. Интенсивное функционирование отдельных генов или их блоков соответствует определенным этапам развития и дифференцировки.

При изучении гигантских политенных хромосом (в слюнных железах личинок дрозофил) и петель в хромосомах типа «ламповых щеток» (в ооцитах на стадии профазы I) было установлено, что мРНК синтезируется с разной скоростью в разных участках хромосом, в частности, образование пуфов и петель связано с повышением интенсивности синтеза мРНКВ гигантских политенных хромосомах часто наблюдаются вздутия определенных районов хромосом, обусловленные декомпактизацией отдельных дисков и интен­сивным синтезом в них РНК. Эти вздутия называются пуфы (или кольца Бальбиани). Пуфы представляют собой места интенсивного синтеза мРНК. Динамика образования пуфов на гигантских хромосомах в процессе развития двукрылых является отраже­нием смены активности генов. Формирование комплексов пуфов, характерных для клеток отдельных тканей и органов дифференцированного организма, является показателем общего уровня наиболее интенсивно протекающих метаболических процессов в данных клетках. При снижении синтетической активности петли синтезированная мРНК отделяется от хромосомы и пуфы политенных хромосом исчезают.

Установлена роль стероидных гормонов (в частности, экдизона – гормона окукливания) в индукции пуфов, а также роль белков, синтезированных ранними пуфами, в индукции поздних пуфов. Таким образом, стероидные гормоны и белки, вероятно, не единственные факторы, ответствен­ные за переключение генов в онтогенезе, а, следовательно, и за смену фаз индивидуального развития организма. Доказано, что после введения этого гор­мона молодым личинкам довольно быстро возникают специфиче­ские пуфы, при­чем продолжительность их образования зависит от количества введенного гормона.

Последовательность образования пуфов изменяется также при воздействиях различными химическими агентами или температурными условиями. Некоторые антибиотики, влияющие на обмен РНК (например, актиномицин), подавляют образование пуфов, а антибиотики, ингибирующие синтез белка (например, пуромицин), не влияют на этот процесс. Следовательно, активность пуфов находится под контролем гормональных факторов (закодированных в генотипе) и факторов внешней среды.

Особенно велика роль стероидных гормонов в регуляции генной активности у животных. Известно, что гормоны синтезируются в специализированных клетках желез внутренней секреции и циркулируют по всему организму. Однако отдельные гормоны активируют гены не во всех клетках, а только в клетках-мишенях, которые содержат специальные рецепторные белки, с которыми специфи­чески связываются молекулы гормона. Это связывание происходит в цитоплазме, а затем образовавшийся комп­лекс проникает в ядро, где он взаимодействует с определенными негистоновыми белками хромосом. В отсутствие гормонов эти белки блокируют либо промоторные, либо иные, пока неизвестные регуляторные участки опре­деленных генов. Комплекс «гормон – рецепторный белок» снимает блокирующее действие негистонового белка-репрессора, следствием чего являются транскрипция данного гена, созревание мРНК, транспорт ее в цитоплазму и синтез белка.Связь синтетической активности с морфологическими преоб­разованиями хромосом была установлена при изучении оогенеза у амфибий, в ходе которого образуются хромосомы типа «ламповых щеток». Эти хромосомы получили свое название за сходство со щетками, которыми когда-то чистили керосиновые лампы. Они имеют отчетливо выраженное хромомерное (узелковое) строение. Из хромомеров в виде петель вытянуты ДНК-вые оси хромосом. Поскольку хромосомы типа ламповых щеток существуют в диплотене и состоят из четырех хроматид, каждый участок таких хромосом представлен четырьмя хромомерами и четырьмя петлями. Окружение петель представляет собой гранулы и фибриллы, состоящие из вновь синтезированной РНК и белков. Таким образом, петли – это участки хромомера с интенсивной транскрипцией. Обычно в них легко различают тонкий конец, где начинает свое движение РНК-полимераза, и толстый конец, где транскрипция заканчивается. При снижении синтетической активности петли синтезированная РНК отделяется от хромосомы и петля спадает.

Число петель близко к числу типов РНК, присутствующих в цитоплазме. Эта РНК частично используется для синтеза рибосом и белков цитоплазмы яйца. Однако большая часть молекул мРНК, синтезированных хромосомами типа ламповых щеток, используется позже во время раннего эмбриогенеза.

Цитохимическое изучение хромосом типа «ламповых щеток» выявило их функциональное сходство с политенными хромосомами.

-2

Регуляция на уровне процессинга РНК обес­печивает возможность образования различных типов зрелой, функционально активной мРНК. Процессинг РНК регулируется с помощью рибозимов(катализаторов рибонуклеиновой природы) и ферментов матураз.

Одной из форм сплайсинга является альтернативный сплайсинг, при котором одному участку ДНК и одному первичному транскрипту (пре-мРНК) может соответствовать несколько типов зрелой мРНК и, соответственно, несколько изотипов (т.е. разных форм) одного и того же белка, например, мышечного белка тропонина. Твердо установлено, что некоторые генетические заболевания человека (фенилкетонурия, некоторые гемоглобинопатии) обусловлены нарушением сплайсинга.

Сплайсинг РНК открыт сравнительно недавно, поэтому достоверных данных по регуляции активности генов на этом уровне недостаточно. Наиболее подробно изучена регуляция генов, контролирующих усвоение галактозы у дрожжей. Показано, что эти системы регуляции действуют как на уровне транскрипции, так и на посттранскрипционном уровне. При этом осуществляется многоступенчатая, или каскадная, регуляция,в которой участвуют элементы позитивного и негативного контроля, последовательно регулирующие активность друг друга.

Регуляция на уровне трансляции обусловлена различной активностью разных типов мРНК. Например, у прокариот некоторые мРНК транслируются только в присутствии эритромицина. У эукариот регуляция генной активности на уровне трансляции хорошо прослежена на примере морского ежа. Его неоплодотворенные яйца содержат большое количество «замаскированной» (нетранслируемой) мРНК. У дрозофилы подобные мРНК, кодирующие белки оболочки яйцеклетки, накапливаются в цитоплазме.

Экспрессия генов на уровне посттрансляционной модификации полипептидов регулируется путем посттрансляционной модификацией белков (фосфорилированием, ацетилированием, расщеплением исходной полипептидной цепи на более мелкие фрагменты и т.д.). Например, белковый гормон инсулин, синтезирующийся в клетках поджелудочной железы, образуется в форме препроинсулина, из которого затем путем отщепления «лишних» пептидов образуется проинсулин. Из проинсулина вырезаются две субъединицы, представляющие собой А- и В-цепи инсулина. Эти две цепи сшиваются между собой с помощью дисульфидных мостиков. Четыре образовавшиеся АВ-структуры соединяются в белковый тетрамер, который присоединяет два иона Zn2+, и в результате образуется зрелый инсулин.

Широко распространен механизм регуляции активности ферментов, основанный на присоединении к ним молекул-эффекторов. Чаще всего в роли эффекторов выступают конечные продукты цепей биосинтеза, которые связываются с первым или с одним из первых ферментов данного метаболического пути и подавляют его активность, тем самым выключая всю цепь синтеза. Это ингибирование конечным продуктом,благодаря которому регулируются сразу несколько этапов метаболизма. Конечный продукт связывается с ферментом не в его активном центре, а в аллостерическом центре, и такое взаимодействие индуцирует изменение (инактивацию) активного центра фермента.

Термин «геном» был предложен Гансом Винклером в 1920 г. для описания совокупности генов, заключённых в гаплоидном наборе хромосом организмов одного биологического вида. Первоначальный смысл этого термина указывал на то, что понятие генома в отличие от генотипа является генетической характеристикой вида в целом, а не отдельной особи. С развитием молекулярной генетики значение данного термина изменилось. Известно, что ДНК, которая является носителем генетической информации у большинства организмов и, следовательно, составляет основу генома, включает в себя не только гены в современном смысле этого слова. Большая часть ДНК эукариотических клеток представлена некодирующими («избыточными») последовательностями нуклеотидов, которые не заключают в себе информации о белках и РНК.

Генетическая информация в клетках содержится не только в хромосомах ядра, но и во внехромосомных молекулах ДНК. У бактерий к таким ДНК относятся плазмиды и некоторые умеренные вирусы, в клетках эукариот - это ДНК митохондрий, хлоропластов и других органоидов клеток. Объёмы генетической информации, заключённой в клетках зародышевой линии (предшественники половых клеток и сами гаметы) и соматических клетках, в ряде случаев существенно различаются. В онтогенезе соматические клетки могут утрачивать часть генетической информации клеток зародышевой линии, амплифицировать группы последовательностей и (или) значительно перестраивать исходные гены.

Следовательно, под геномом организма понимают суммарную ДНК гаплоидного набора хромосом и каждого из внехромосомных генетических элементов, содержащуюся в отдельной клетке зародышевой линии многоклеточного организма. В определении генома отдельного биологического вида необходимо учитывать, 1), генетические различия, связанные с полом организма, поскольку мужские и женские половые хромосомы различаются. Во-вторых, из-за громадного числа аллельных вариантов генов и сопутствующих последовательностей, которые присутствуют в генофонде больших популяций, можно говорить лишь о некоем усреднённом геноме, который сам по себе может обладать существенными отличиями от геномов отдельных особей. Размеры геномов организмов разных видов значительно отличаются друг от друга, и при этом чанто не наблюдается корреляции между уровнем эволюционной сложности биологического вида и размером его генома.

Генотип - совокупность генов данного организма, кот-я, в отличие от понятий генома и генофонда, характеризует особь, а не вид (ещё отличием генотипа от генома является включение в понятие "геном" некодирующих последовательностей, не входящих в понятие "генотип"). Вместе с факторами внешней среды определяет фенотип организма.

Обычно о генотипе говорят в контексте определенного гена, у полиплоидных особей он обозначает комбинацию аллелей данного гена (см. гомозигота, гетерозигота). Большинство генов проявляются в фенотипе организма, но фенотип и генотип различны по следующим показателям:

1. По источнику информации (генотип определяется при изучении ДНК особи, фенотип регистрируется при наблюдении внешнего вида организма).

2. Генотип не всегда соответствует одному и тому же фенотипу. Важно отметить, что некоторые гены проявляются в фенотипе только в определённых условиях. С другой стороны, некоторые фенотипы, например, окраска шерсти животных, являются результатом взаимодействия нескольких генов.

Примером различия генотипа и фенотипа служит наследование гемофилии. Иногда в семье, в которой оба родителя здоровы, рождается больной ребёнок. То есть хотя болезнь не проявилась в фенотипе родителей, в их генотипе присутствовал один нормальный аллель и один мутированный аллель гена, то есть они являлись носителями заболевания. В данном случае фенотип здоровых людей и носителей заболевания одинаков.

Кариотип - совокупность признаков (число, размеры, форма и т. д.) полного набора хромосом, присущая клеткам данного биологического вида (видовой кариотип), данного организма (индивидуальный кариотип) или линии (клона) клеток. Кариотипом иногда также называют и визуальное представление полного хромосомного набора (кариограммы).

Несмотря на дискретное генетическое определение отдельных признаков, в индивидуальном развитии воссоздается сбалассированный комплекс признаков и свойств, соответствующий типу морфофункциональной организации конкретного биологического вида. Закономерно возникают плазмодий малярийный, кедр ливанский, аскарида человеческая, слон индийский, человек разумный. Это достигается вследствие интеграции дискретных в структурном отношении единиц наследственности в целостную в функциональном плане систему - генотип (геном). Такая интеграция находит отражение в разнообразных взаимодействиях генов в процессе их функционирования. Обычно генотип определяют как совокупность всех генов (более точно аллелей) организма. С учетом факта интеграции генотип представляется системой определенным образом взаимодействующих генов.

Генные взаимодействия происходят на нескольких уровнях: непосредственно в генетическом материале клеток, между и РНК и образующимися полипептидами в процессе биосинтеза белка, между белками-ферментами одного метаболического цикла.

Взаимодействие генов на уровне продуктов функциональной активности (РНК или полипептидов) лежит в основе развития сложных признаков.

Рассмотрим в качестве примера синдром Морриса. У больных, кариотип которых включает половые хромосомы Х и У, отмечается недоразвитие вторичных половых признаков мужского пола, которое зависит от продукции и взаимодействия на известной стадии онтогенеза двух факторов мужского полового гормона и белка-рецептора, встраивающегося в клеточную оболочку и делающего клетки чувствительными к гормону. Синтез указанных факторов контролируется разными генами. У лиц с синдромом Морриса мужской половой гормон образуется своевременно и в требуемом количестве, но не синтезируется белок-рецептор. Итак, резюмируя всё выше сказанное, отметим, что , нормальное развитие признака комплекса мужских вторичных половых признаков контролируется двумя генами, которые взаимодействуют на уровне продуктов их функциональной активности.

В настоящее время для большинства признаков нельзя указать точно уровень взаимодействия тех генов, которые контролируют их развитие. Учитывая интерес практического врача прежде всего к закономерностям наследования признаков, ниже приводятся формы взаимодействия генов, которые изменяют наследование определенным образом. При этом уровень взаимодействия генов не оговаривается.

Выделяют взаимодействие аллельных и неаллельных генов.

Взаимодействие аллельных генов обусловливает доминантное, рецессивное, кодоминантное наследование признаков, явление неполного доминирования. При перечисленных формах доминирования результаты взаимодействия генов проявляются во всех соматических клетках организма.

При такой форме взаимодействия как аллельное исключение в части клеток организма, гетерозиготного по данному локусу, активен один аллель, тогда как в других клетках другой. В качестве примера рассмотрим генетический контроль синтеза иммуноґлобулинов - белков плазмы крови, которые обеспечивают в организме человека реакции иммунологической защиты. Они состоят из «тяжелых» и «легких» полипептидных цепей, которые, синтезируются под генетическим контролем трех разных групп неаллельных генов. И «тяжелые», и «легкие» полипептиды образуются плазматическими клетками. При этом отдельные плазматические клетки синтезируют лишь по одному из возможных вариантов «тяжелых» и «легких» полипептидов глобулинов. Аллельное исключение увеличивает разнообразие признаков многоклеточного организма при идентичности генотипов соматических клеток. Механизм этого явления окончательно не установлен.

Другим примером аллельного исключения является генетическая инактивация одной из Х-хромосом женских особей. В мировой литературе описаны лишь единичные случай заболевания женщин гемофилией. Вместе с тем матери - гетерозиготные носители аллеля гемофилии - передают его половине своих дочерей, которые нормальный аллель получают с Х-хромосомой отца. Случайный характер инактивации путем гетерохроматизации приводит к выключению из функции в одних клетках материнской, а в других - отцовской Х-хромосомы. Итак, резюмируя всё выше сказанное, отметим, что , всегда остаются клетки, которые несут нормальный аллель синтеза антигемофилического фактора в активном состоянии.

Одной из форм взаимодействия неаллельных генов является «эффект положения». В нем участвуют гены одной хромосомы, занимающие близлежащие локусы. Он проявляется в изменчивости функциональной активности гена в зависимости от того, какой аллель находится в соседнем локусе.

Так, эритроцитарные белки-антигены системы групп крови «резус» синтезируются в организме человека под контролем трех генов. Последние, судя по сцеплению между ними, располагаются в хромосоме на близком расстоянии друг от друга. Каждый из них имеет доминантный и рецессивный аллели - D, С, Е и d, с, e. Индивидуумы CDE/сDе и СDе/сDE генетически идентичны. Тем не менее у лиц с первой комбинацией аллелей образуется много антигена Е и мало антигена С, у лиц со второй комбинацией аллелей наблюдается обратная картина, т.е. соседство аллеля С с аллелем Е снижает его функциональную активность. «Эффект положения» служит частным случаем большого класса генных взаимодействий, заключающихся в модулировании функции генов другими генами.

К классу взаимодействия неаллельных генов относится также эпистаз,- подавление одного гена другим. Если эпистатическим действием обладает доминантный аллель, говорят о доминантном эпистазе. При рецессивном эпистазе такое действие проявляют рецессивные аллели в гомозиготном состоянии.

При эпистазе модулирующее действие заключается в подавлении одними генами функции других генов. Гены, оказывающие такой эффект, называются ингибиторами или супрессорами. Гены, усиливающие функции других генов, называются интенсификаторами.

Еще одной формой взаимодействия неаллельных генов является комплементарность. Она заключается в том, что развитие признака требует наличия в генотипе доминантных аллелей двух определенных генов. В присутствии доминантного аллеля лишь одного из них признак не воспроизводится.

Широту генных взаимодействий необходимо учитывать при анализе генетических явлений. Показателем зависимости функционирования наследственных задатков от характеристик генотипа служит экспрессивность и пенетрантность генов.

Экспрессивность заключается в изменчивости количественного выражения признака у разных особей - носителей соответствующего аллеля.

Под пенетрантностью понимают способность гена обеспечить развитие признака до такой степени, когда его удается обнаружить с помощью имеющихся методов обследования. Пенетрантность измеряется процентом организмов, имеющих в фенотипе признак, от общего количества обследованных носителей соответствующего аллеля.

Экспрессивность и пенетрантность отражают зависимость функции гена от особенностей генотипа и проявляются в процессе развития признака. Следовательно, в основе этих генетических явлений может лежать колебание активности самих генов, характер взаимодействия продуктов генной активности, особое сочетание условий среды в онтогенезе организма.

Геномный уровень организации наследственного материала, объединяющий всю совокупность хромосомных генов, является эволюционно сложившейся структурой, характеризующейся относительно большей стабильностью, нежели генный и хромосомный уровни. На геномном уровне система сбалансированных по дозам и объединенных сложнейшими функциональными взаимосвязями генов представляет собой нечто большее, нежели простую совокупность отдельных единиц. Поэтому результатом функционирования генома является формирование фенотипа целостного организма. В связи с этим фенотип организма нельзя представлять как простую совокупность признаков и свойств, это организм во всем многообразии его характеристик на всем протяжении индивидуального развития. Итак, резюмируя всё выше сказанное, отметим, что , поддержание постоянства организации наследственного материала на геномном уровне имеет первостепенное значение для обеспечения нормального развития, организма и воспроизведения у особи в первую очередь видовых характеристик.

В то же время допустимость рекомбинации единиц наследственности в генотипах особей обусловливает генетическое разнообразие их, что имеет важное эволюционное значение. Мутационные изменения, реализующиеся на геномном уровне организации наследственного материала,- мутации регуляторных генов, обладающих широким плейотропным действием, количественные изменения доз генов, транслокации и транспозиции генетических единиц, влияющие на характер экспрессии генов, наконец, возможность включения в геном чужеродной информации при горизонтальном переносе нуклеотидных последовательностей между организмами разных видов, - оказываясь иногда эволюционно перспективными, вероятно, являются основной причиной ускорения темпов эволюционного процесса на отдельных этапах исторического развития живых форм на Земле.

В заключении можно отметить, что геномное здоровье человека - это фундамент соматического, психического и репродуктивного здоровья. Это основа эволюции человека как биологического вида.

При этом нарушения структурной и функциональной стабильности генома одного человека опасны только для его здоровья и здоровья его потомков.

Тогда как аналогичные нарушения применительно к популяции человека, например, в случае глобальных катастроф опасны для здоровья человечества в целом, например, здоровье населения, проживающего на территориях, прилегающих к ядерным полигонам в американском штате Невада, Семипалатинской области Казахстана, или территориях, граничащих с Чернобыльской АЭС в Украине и других опасны для человечества в целом.

Они ведут к увеличению генетического груза, включая рост объема гетерозиготного носительства патологических генов и расширение спектра генных, хромосомных, эндокринных, иммунных, сердечно-сосудистых, нервных, психических, онкологических и других заболеваний.

Наука
7 млн интересуются