На вопрос о том, что такое лазер, академик Н. Г. Басов отвечал так: «Лазер — это устройство, в котором энергия, например тепловая, химическая, электрическая, преобразуется в энергию электромагнитного поля — лазерный луч. При таком преобразовании часть энергии неизбежно теряется, но важно то, что полученная в результате лазерная энергия обладает более высоким качеством. Качество лазерной энергии определяется ее высокой концентрацией и возможностью передачи на значительное расстояние. Лазерный луч можно сфокусировать в крохотное пятнышко диаметром порядка длины световой волны и получить плотность энергии, превышающую уже на сегодняшний день плотность энергии ядерного взрыва. С помощью лазерного излучения уже удалось достичь самых высоких значений температуры, давления, магнитной индукции. Наконец, лазерный луч является самым емким носителем информации и в этой роли — принципиально новым средством ее передачи и обработки».
Слово лазер образовано сочетанием первых букв слов английского выражения «Light Amplification by Stimulated Emission of Radiation» («усиление света при помощи индуцированного излучения»).
Лазер – усиление света при помощи индуцированного излучения
Под индуцированным излучением понимается излучение возбужденных атомов под действием падающего на них света. На языке квантовой теории вынужденное излучение означает переход атома из высшего энергетического состояния в низшее, но не самопроизвольный, как при обычном излучении, а переход под влиянием внешнего воздействия.
Еще в 1940 г. советский физик В. А. Фабрикант указал на возможность использования явления вынужденного излучения для усиления электромагнитных волн. В 1954 г. советские ученые Н. Г. Басов и А. М. Прохоров и независимо от них американский физик Ч. Таунс использовали явление индуцированного излучения для создания микроволнового генератора радиоволн с длиной волны λ = 1,27 см. За разработку нового принципа генерации и усиления радиоволн Н. Г. Басову и А. М. Прохорову в 1959 г. была присуждена Ленинская премия. В 1963 г. Н. Г. Басов, А. М. Прохоров и Ч. Таунс были удостоены Нобелевской премии.
В 1960 г. в США был создан первый лазер — квантовый генератор электромагнитных волн в видимом диапазоне спектра.
Свойства лазерного излучения. Лазерные источники света обладают рядом существенных преимуществ по сравнению с другими источниками света.
1. Лазеры способны создавать пучки света с очень малым углом расхождения.
2. Свет лазера обладает исключительной монохроматичностью.
3. Лазеры являются самыми мощными источниками света. Напряженность электрического поля в электромагнитной волне, излучаемой лазером, превышает напряженность поля внутри атома.
Принцип действия лазеров.
В обычных условиях большинство атомов находится в низшем энергетическом состоянии. Поэтому при низких температурах вещества не светятся.
При прохождении электромагнитной волны сквозь вещество ее энергия поглощается. За счет поглощенной энергии волны часть атомов возбуждается, т. е. переходит в более высокое энергетическое состояние.
Устройство рубинового лазера.
Из кристалла рубина изготовляют стержень с плоскопараллельными торцами.
Один из торцов рубинового стержня делают зеркальным, а другой — полупрозрачным. Через полупрозрачный торец выходит мощный кратковременный (длительностью около сотни микросекунд) импульс красного света, обладающий феноменальными свойствами.
Волна является когерентной, так как все атомы излучают согласованно, и очень мощной, так как при индуцированном излучении вся запасенная энергия выделяется за очень малое время.
Другие типы лазеров.
Рубиновый лазер, работает в импульсном режиме. Существуют также лазеры непрерывного действия. В газовых лазерах этого типа рабочим веществом является газ. Атомы рабочего вещества возбуждаются электрическим разрядом.
Применяются и полупроводниковые лазеры непрерывного действия. Они созданы впервые в нашей стране. В них энергия для излучения заимствуется от электрического тока.
Созданы очень мощные газодинамические лазеры непрерывного действия на сотни киловатт. В этих лазерах «перенаселенность» верхних энергетических уровней возникает при расширении и адиабатном охлаждении сверхзвуковых газовых потоков, нагретых до нескольких тысяч кельвинов.
Применение лазеров.
Очень перспективно применение лазерного луча для связи, особенно в космическом пространстве, где нет поглощающих свет облаков. Лазеры используются для записи и хранения информации (лазерные диски). Огромная мощность лазерного луча используется для испарения различных материалов в вакууме, для сварки и т. д. С помощью луча лазера проводят хирургические операции: например, «приваривают» отслоившуюся от глазного дна сетчатку; помогают человеку получать объемные изображения предметов, используя когерентность лазерного луча.
Лазеры позволили создать светолокатор, с помощью которого расстояния до предметов измеряются с точностью до нескольких миллиметров. Такая точность недоступна для радиолокаторов.
Возбуждая лазерным излучением атомы или молекулы, можно вызвать между ними химические реакции, которые в обычных условиях не идут.
Перспективным может быть использование мощных лазерных лучей для осуществления управляемой термоядерной реакции.
В настоящее время лазеры настолько широко используются, что перечислить все области их применения не представляется возможным.