Найти тему
Control myLab

Как повысить точность средств измерений? Какие есть методы? (часть 2)

Оглавление

Данная статья является продолжением статьи "Как повысить точность измерений? Какие есть методы? (часть 1)"

Метод многократных наблюдений

Метод многократных наблюдений используется для уменьшения случайной составляющей погрешности средства измерений и состоит в том, что: за некоторый постоянный интервал времени, отведенный для измерения, выполняют несколько наблюдений, затем с помощью вычислительного устройства, входящего в состав данного средства измерений, вычисляют среднее арифметическое значение измеряемой величины и оценку среднеквадратического отклонения результата измерения.

Метод многоканальных измерений аналогичен рассмотренному в части 1 методу параллельных измерений. Средства измерений, с помощью которых реализуется данный метод, содержат несколько идентичных по характеристикам параллельных измерительных каналов и вычислительное устройство. Последнее, получая измерительную информацию по этим каналам, выполняет необходимые вычисления. Такой метод позволяет уменьшить случайную составляющую погрешности средства измерений.

Метод параметрической стабилизации

Метод параметрической стабилизации, называемый еще конструктивно-технологическим, состоит в стабилизации статической характеристики средств измерений. Параметрическая стабилизация реализуется путем изготовления средств измерений из точных и стабильных элементов, параметры которых мало подвержены внешним влияниям; термостабилизации; стабилизации параметров питания средств измерений; экранировки средств измерений от магнитных и электрических полей и т. п. Данный метод уменьшает систематическую и случайную погрешности средств измерений. Он является классическим в приборостроении.

Структурные методы

Структурные методы основаны на том, что в состав средств измерений включаются дополнительные узлы, элементы и меры, обеспечивающие повышение точности этих средств измерений за счет информации, полученной с их помощью. Структурные методы повышения точности средств измерений подразделяют на методы, обеспечивающие стабилизацию статической характеристики средства измерений, и методы, основанные на коррекции этой характеристики.

Методы, обеспечивающие стабилизацию статической характеристики средства измерений

Метод отрицательной обратной связи реализуем только при наличии преобразовательных элементов или преобразователей, способных осуществлять преобразование выходного сигнала средства измерений во входной (обратный преобразователь). Создание таких преобразователей – часто сложная техническая задача. Применение данного метода обеспечивает уменьшение мультипликативной погрешности и погрешности нелинейности, а относительная аддитивная погрешность при этом не изменяется. В то же время использование метода приводит к уменьшению чувствительности средства измерения. Данный метод повышает точность средств измерения и наряду с методом параметрической стабилизации является наиболее распространенным.

Метод инвариантности состоит в том, что в средстве измерений помимо измерительного канала имеется сравнительный канал, к которому не подается входной сигнал, но который, как и измерительная цепь, находится под воздействием некоторой влияющей величины. Причем параметры сравнительной цепи подобраны так, что изменение ее сигнала под действием влияющей величины идентично изменению сигнала измерительной цепи под действием этой величины, т. е. возмущения, вызванные влияющей величиной, поступают в средство измерений по двум каналам (принцип двухканальности). Использование разности сигналов измерительной и сравнительной цепей (при дифференциальном включении этих цепей) обеспечивает независимость (инвариантность) результирующего сигнала от названной влияющей величины, т. е. метод обеспечивает исключение дополнительной погрешности, вызванной изменениями некоторой, как правило, основной влияющей величины.

Метод модуляции состоит в том, что сигнал, поступающий на вход средства измерений, или параметры этого средства измерений подвергаются принудительным периодическим изменениям (модуляции) с частотой, не совпадающей с областью частот измеряемого сигнала. Использование метода модуляции позволяет уменьшить погрешности от сил трения, явлений поляризации и гистерезиса.

Метод прямого хода состоит в том, что измеряемый сигнал поступает к чувствительному элементу средства измерений через ключ, с помощью которого осуществляется периодическое во времени отключение измеряемого сигнала от чувствительного элемента и подача к последнему сигнала, значение которого равно нулю. Это обеспечивает работу средства измерений на восходящей ветви (прямой ход) статической характеристики при всех значениях измеряемого сигнала, что исключает наиболее существенную погрешность многих средств измерений – погрешность от вариации.

Методы, основанные на коррекции статической характеристики (методы коррекции погрешности средств измерений).

Метод вспомогательных измерений заключается в автоматизации процесса учета дополнительной погрешности средства измерений по известным функциям влияния ряда влияющих величин. Для этого осуществляется измерение значений этих величин и с помощью вычислительного устройства, построенного с учетом названных функций влияния, автоматически корректируется выходной сигнал средства измерений.

Метод обратного преобразования (итерационный метод) базируется на использовании дополнительно в составе средства измерений кроме прямой измерительной цепи (прямого преобразователя), цепи, способной осуществлять обратное преобразование выходного сигнала (обратный преобразователь), имеющей существенно большую точность, чем цепь прямого преобразования. Результат измерения получают путем итераций. В процессе каждой итерации последовательно осуществляются: прямое преобразование измеряемой величины и запоминание результата, обратное преобразование запомненного значения этой величины, прямое преобразование сигнала обратного преобразователя, соответствующего запомненному значению измеряемой величины, и сравнение результатов этих двух преобразований, на основе которого формируется корректирующий сигнал. Обратный преобразователь в данном методе играет роль как бы многозначной меры, по которой корректируется статическая характеристика прямого преобразователя. Метод обратного преобразования позволяет уменьшать в зависимости от используемого алгоритма коррекции аддитивную и мультипликативную погрешности средств измерений.

Метод образцовых сигналов (образцовых мер) состоит в определении в каждом цикле измерения реальной функции преобразования средства измерений с помощью образцовых сигналов (мер), т. е. метод состоит в автоматической градуировке средства измерений в каждом цикле. Цикл включает в себя измерение физической величины, поступающей на вход средства измерения, поочередное измерение одной или нескольких мер, подключаемых вместо измеряемой физической величины на вход средства измерений, и решение системы уравнений с помощью вычислительного устройства, из которого определяется значение измеряемой физической величины. В этом решении уже учтены изменения реальной статической характеристики, т. е. данный метод сводится к совокупному измерению. Он позволяет уменьшить аддитивную и мультипликативную погрешность, а также погрешность нелинейности.

Тестовый метод сводится к проведению совокупных измерений. В отличие от метода образцовых сигналов в тестовом методе в каждом цикле работы средства измерений кроме измерения физической величины, поступающей на вход средства измерений, осуществляют измерение величин-тестов, каждая из которых формируется из меры и измеряемой величины. Значение измеряемой величины определяется из системы уравнений, решаемой с помощью вычислительного устройства. По существу данный метод является развитием метода образцовых сигналов.

Фото автора ThisIsEngineering: Pexels
Фото автора ThisIsEngineering: Pexels

Подписывайтесь на наш канал!

Наука
7 млн интересуются