Многие детали машин работают в условиях трения и подвергаются действию ударных и изгибающих нагрузок. Такие детали должны быть твердыми, износостойкими, прочными и одновременно вязкими, пластичными. Это достигается поверхностным упрочнением.
Назначение поверхностного упрочнения – повышение прочности, твердости, износостойкости поверхностных слоев деталей при сохранении вязкой, пластичной сердцевины для восприятия ударных нагрузок.
У деталей машин, работающих при динамических и циклических нагрузках, трещины усталости возникают в поверхностных слоях под влиянием растягивающих напряжений. Если на поверхности создать остаточные напряжения сжатия, то растягивающие напряжения от нагрузок в эксплуатации будут меньше и увеличится предел выносливости (усталости). Создание в поверхностных слоях деталей напряжений сжатия – второе назначение поверхностного упрочнения.
Основные методы поверхностного упрочнения можно разделить на три группы:
механические – пластическое деформирование поверхностных слоев, создание наклепа (нагартовки);
термические – поверхностная закалка;
химико-термическая обработка – цементация, азотирование, хромирование и др.
Механическое упрочнение поверхности
Упрочнение металла под действием холодной пластической деформации называется наклепом, или нагартовкой. При этом изменяется строение металла: искажается кристаллическая решетка и деформируются зерна, т. е. из равноосных они превращаются в неравноосные (в виде лепешки, блина). Это сопровождается увеличением твердости и прочности в 1,5 – 3 раза. Возникающие в наклепанном слое напряжения сжатия повышают сопротивление усталости. Упрочнение поверхности пластическим деформированием повышает надежность работы деталей, снижает чувствительность к концентраторам напряжений, повышает сопротивление изнашиванию и коррозионную стойкость, устраняет следы предыдущей обработки.
Накатка роликами и шариками – операция, при которой стальной закаленный ролик (шарик), обкатывая упрочняемую поверхность при заданной нагрузке (нажатии), деформирует, т. е. сминает поверхностный слой металла на определенную глубину. Происходит упрочнение – наклеп. Глубина упрочненного слоя – 0,5 – 2,0 мм.
Дробеструйная обработка – операция, при которой частицы твердого металла (дробь), вылетая из дробемета с большой скоростью (90 – 150 м/с), ударяют по упрочняемой поверхности, происходит ее наклеп. Прочность, твердость и предел усталости повышаются. Толщина упрочненного слоя составляет 0,2 – 0,4 мм. Дробеструйному наклепу подвергают пружины, рессоры, зубчатые колеса, валы торсионные и т. п. Например, рессорные листы после термообработки перед сборкой в пакет подвергают дробеструйному наклепу, что значительно увеличивает срок службы рессоры (в 5 – 6 раз). Дробеструйная обработка является конечной технологической операцией для деталей после механической и термической обработки. Оборудованием являются дробеметы.
Эти методы упрочнения наиболее распространены в машиностроении. Кроме них используются алмазное выглаживание, вибронакатывание, калибровка отверстий и т. п.
Термическое упрочнение – поверхностная закалка
Сущность поверхностной закалки состоит в том, что верхние слои детали быстро нагреваются выше температуры критических точек и создается резкий перепад температуры по сечению от поверхности к сердцевине. Если нагрев прервать и деталь быстро охладить, то закалку получит только ее поверхность, а сердцевина останется незакаленной.
Закалка с индукционным нагревом током высокой частоты (закалка ТВЧ) – операция, при которой деталь для нагрева помещают в индуктор (соленоид), представляющий собой один или несколько витков медной трубки, охлаждаемой проточной водой. Переменный ток высокой частоты, протекая по индуктору, создает переменное магнитное поле. В результате индукции в поверхностном слое детали возникают вихревые токи, и выделяется джоулево тепло. Происходит быстрый нагрев поверхности до температуры закалки. Время нагрева – 20 – 50 с.
Охлаждение нагретой для закалки детали производится либо в баке (с водой, эмульсией или маслом), либо душевым устройством – спрейером. Глубина закаленного слоя в зависимости от условий работы детали составляет 1,5 – 4,0 мм, твердость – 63 – 65 HRC. После закалки ТВЧ деталь подвергают низкому отпуску или самоотпуску. Поверхностную индукционную закалку чаще применяют для углеродистых сталей (0,4 – 0,5 % С) и значительно реже – для легированных.
Индукционный нагрев позволяет сократить длительность термической обработки и повысить производительность труда, получить поверхность без окалины, уменьшить деформацию и коробление деталей при закалке.
Закалка с индукционным нагревом широко применяется во всех отраслях промышленности для упрочнения коленчатых и шлицевых валов, распределительных валиков, зубьев шестерен, тормозных шкивов, шпинделей, борштанг и других деталей.
Закалка с газопламенным нагревом применяется в основном для крупных деталей, толщина закаленного слоя – не менее 20 – 40 мм при твердости 55 – 58 HRC.
Поверхность детали нагревают газовым пламенем, имеющим температуру 2400 – 3150С. Для нагрева используют одно- и многопламенные горелки. Вследствие подвода большого количества тепла поверхность детали быстро нагревается до температуры выше фазовых превращений. Последующее спрейерное охлаждение обеспечивает закалку поверхностного слоя.
Кроме индукционного и газопламенного нагрева для поверхностной закалки деталей используют установки электроконтактного нагрева и лазерного излучения.
Химико-термическая обработка (ХТО)
Химико-термической обработкой называют поверхностное насыщение стали каким-либо химическим элементом (углеродом, азотом, бором и т. п.) путем его диффузии из внешней среды. Изделие помещают в среду, богатую элементом, и нагревают. Происходит его диффузия вглубь изделия.
При химико-термической обработке в стали протекают фазовые превращения, связанные с нагревом и охлаждением, и изменяется химический состав поверхностных слоев, что в широких пределах изменяет их структуру и свойства.
Цементация стали – операция диффузионного насыщения поверхностного слоя низкоуглеродистой стали углеродом при нагревании в соответствующей среде – карбюризаторе.
Температура цементации 900-950С от 5 до 20 часов. Толщина слоя 0.5-2 мм.
При науглероживании, а затем при закалке поверхностный слой приобретает высокую твердость, износостойкость, в нем образуются остаточные напряжения сжатия. Сердцевина изделия (углерода менее 0,3 %) закалку не воспримет (останется мягкой, пластичной).
Цементации подвергают конструкционные углеродистые и легированные стали. Этот процесс широко применяется при изготовлении деталей используемых в автотракторостроении, станкостроении, инструментальном производстве и т. п.
Цементованные стали после закалки обязательно подвергают низкому отпуску при температуре 160 – 180С. Структура поверхностного слоя – мартенсит с небольшим количеством вторичных карбидов, твердость до 63 HRC.
Азотирование – операция диффузного насыщения поверхностного слоя стали азотом, которая повышает твердость до 70 HRC и износостойкость поверхностного слоя, предел выносливости и сопротивление коррозии.
Твердость азотированного слоя выше, чем цементованного, и сохраняется при нагреве до температуры 450 – 500С, тогда как твердость цементованного слоя, имеющего мартенситную структуру, сохраняется только до 200 – 225С.
Износостойкость и предел выносливости азотированной стали выше, чем цементованной и закаленной. После азотирования проводят шлифование и доводку деталей.
Нитроцементация – операция диффузионного насыщения поверхностного слоя стали углеродом и азотом в газовой среде, состоящей из науглероживающего газа и аммиака.
После нитроцементации следует закалка с низким отпуском. Твердость слоя после закалки и отпуска – 58 – 64 HRC.
Нитроцементацию проводят для деталей сложной формы, склонных к короблению, и по сравнению с газовой цементацией она имеет преимущество: более низкую температуру процесса и меньшее коробление изделий. У деталей, подвергнутых нитроцементации, выше сопротивление износу и коррозии. Например, на Волжском автомобильном заводе 95 % деталей, проходящих ХТО, подвергают нитроцементации.
Борирование – операция насыщения поверхностного слоя стали бором. Она обеспечивает высокую твердость (70 – 72 HRC), износостойкость и устойчивость против коррозии в различных средах.
Хромирование – операция насыщения поверхностного слоя стали хромом для повышения коррозионной стойкости, жаростойкости, а у средне- и высокоуглеродистых сталей при этом значительно повышаются твердость и износостойкость. Твердость среднеуглеродистых сталей – до 70 – 72 HRC.
Старение и другие методы повышения твердости
Старение — еще один вид термообработки, позволяющий повысить твердость сплавов алюминия, магния, титана, никеля и некоторых нержавеющих сталей, которые подвергают предварительной закалке без полиморфного превращения. В процессе старения увеличиваются твердость и прочность, а пластичность понижается.
· Сплавы алюминия, например, дуралюмины (4-5% меди) и сплавы с добавлением никеля и железа выдерживают в пределах часа при температуре 100-180С
· Сплавы никеля подвергают старению в 2-3 этапа, что в сумме занимает от 6 до 30 часов при температурах от 595 до 845С. Некоторые сплавы подвергают предварительной закалке при 790-1220С. Детали из никелевых сплавов помещают в дополнительный контейнеры, чтобы предохранить от контакта с воздухом. Для нагрева используют электрические печи, для мелких деталей могут применяться соляные электродные ванны.
· Мартенситно-стареющие стали (высоколегированные безуглеродистые сплавы железа) стареют около 3 часов при 480-500С после предварительного отжига при 820С.