Есть мнение, что Оптимальное F – это единственный лучший метод управления капиталом. Концепция «оптимального f», наверное, известна каждому валютному спекулянту, который хоть сколь-либо серьезно интересовался мани менеджментом и управлением капиталом. Главный популяризатор этой идеи, американский автор Ральф Винс, хорошо знаком с Ларри Вильямсом – легендарным фьючерсным трейдером. Сам же Винс не является практикующим трейдером, и многие ставят это ему в упрек. Сегодня мы углубимся в эту тему подробно, разберем плюсы и минусы метода оптимальной фракции, расчет, а также рассмотрим модификации подхода.
История
При работе на рынке размеры наших выигрышей и проигрышей постоянно меняются. Иногда мы получаем большие выигрыши, иногда крошечные. Наши убытки подчиняются тому же закону — их размер случаен. Ральф придумал формулу, подобную формуле Келли и названную им «оптимальная F», но в отличие от формулы Келли — ее можно адаптировать к торговле на рынках.
Оптимальное F (образовано от слова «фракция») – доля депозита, при которой мы будем иметь максимальную прибыль. Естественно, оптимальное f — величина не постоянная, и по мере совершения сделок значение будет меняться. То есть необходимо делать пересчет.
Если графически представить изменение конечного депозита (TWR) от размера процента использования средств (F), то зависимость будет описываться кривой:
Ну что же, давайте для наших исследований сгенерируем случайную торговую систему.
Теперь введем систему мани менеджмента – в каждой сделке будем рисковать определенным процентом от нашего капитала (в данном случае 3%):
Как вы видели на графике в самом начале, оптимальная f – это, по сути, экстремум, выше и ниже которого находятся уже неоптимальные значения TWR:
Расчет оптимального f
HPR=1+f*(-сделка/наибольший проигрыш), где:
f — риск в каждой сделке;
сделка — прибыль или убыток в конкретной сделке (в случае убытка выражение в скобках у вас получится отрицательным, как и итоговое значение);
наибольший проигрыш — наибольший убыток за сделку (отрицательное число).
Далее рассчитывается TWR, как произведение всех HPR, то есть:
TWR = HPR1*HPR2*….*HPRn, где n – последняя сделка в вашей выборке.
Ну, и в итоге, мы вычисляем среднее геометрическое HPR (G), которое рассчитывается как корень в степени n от TWR: G=TWR^(1/n), где n — общее количество сделок.
Все параметры для вычисления у нас известны, кроме значения f. Ваша задача – пошагово перебирать f от 0,01 до 1 таким образом, чтобы найти максимальное G. При этом f, при котором G максимально, и будет оптимальным f.
Опасность оптимальной f
Оптимальность f таит в себе большую опасность. Вы наверняка обратили внимание, что в нашем примере оптимальная f составила 20 и при этом при риске 22% мы просто сливаем все подчистую. Отклонение всего на 10% от оптимального значения приводит к фатальным для вашего счета последствиям.
Но дело в том, что когда мы обсуждаем TWR, то допускаем использование дробных лотов. Например, вы можете торговать 5,4789 лотами, если именно это требуется в какой-либо момент. Расчет TWR допускает дробные лоты, чтобы его значение всегда было одинаково для данного набора торговых результатов вне зависимости от их последовательности. Вы можете усомниться в правильности такого подхода, поскольку при реальной торговле это невыполнимо. В реальной жизни вы не можете торговать подобными дробными лотами. Этот аргумент правильный. Но если мы будем использовать только круглые значения лотов для расчета, неправильным станет сам расчет. При этом, чем ближе вы находитесь к оптимальному f, тем лучше. И с другой стороны, немного промахнувшись, вы сольете свой счет.
Очевидно, что чем больше капитализация счета, тем более точно вы сможете придерживаться оптимального f, так как сумма в долларах, требуемая под один лот, составит меньший процент от общего баланса.
И все же, нельзя сказать, что эта формула совсем уж бесполезна. Более того, в некоторых частных случаях, например, для бинарных опционов или для систем с жесткими стопами и профитами (правда, такие системы, на мой взгляд, сами по себе неоптимальные), она является точной. Поэтому, если вы точно знаете ваш максимальный убыток, данный способ управления капиталом вам вполне подойдет.
Давайте проверим мою точку зрения – сгенерируем еще 1000 сделок с теми же характеристиками – средним значением 1 и стандартным отклонением 5. При этом мы будем использовать ту же оптимальную f, равную 20%.
Добавим 1000 сделок:
Допустим, оптимальная фракция для предыдущих 100 сделок составляла 15%, в последующих 100 сделках эта доля может оказаться равной 9%. Если для предыдущих 100 сделок оптимальной была доля 15% и вы решили провести 100 следующих сделок с той же фракцией, то вы вполне можете ошибиться и легко выйти за пределы суммы на вашем торговом счете.
Практическое применение стратегии оптимальной фракции оптимизирует прошлые сделки. Поэтому очередная сделка сразу попадает в последовательность, и оптимальная доля повторно оптимизируется. И будет оптимизироваться при заключении каждой сделки. То есть в реальной торговле вы после каждой сделки должны будете заново рассчитывать оптимальную фракцию.
Кроме того, торговля совершенно непредсказуема, несмотря на все показатели, которые можно вычислить на основе имеющейся статистики. С помощью логики мы можем всего лишь сделать определенные выводы относительно разумных ожиданий и вероятностей. Никакое математическое выражение не может нам гарантировать, что из N количества сделок 50% будут прибыльными, а остальные 50% принесут убытки. Торговые стратегии формируются на основе логики и в значительной степени рыночной статистики. Поведение рынка меняется. То, что вчера представлялось благоприятным, сегодня может стать опасным.
Итак, основная проблема оптимальной фракции, как вы уже поняли, состоит в ее привязке к максимальной убыточной сделке. В случае использования жестких стоп лоссов это не страшно, но, когда выходы из сделок в убыточной зоне в основном происходят по сигналам с рынка, оптимальная f становится не оптимальной и завышенной, что грозит сливом депозита или же серьезными потерями.
Предположим, в течение торгового дня произошло событие, вызвавшее на рынке шок, и до этого шока волатильность была достаточно низкой. Само собой, в таких условиях ваша оптимальная f будет очень высока и велика вероятность того, что вы в этот самый неудачный день войдете в рынок с риском процентов тридцать, который обернется в итоге во все 50% убытка.
Именно по перечисленным выше причинам и используют различные модификации метода оптимального f, с которыми мы сейчас и познакомимся.
Разбавленная оптимальная фракция
Формула расчета очень проста:
Diluted optimal f = Optimal f * X, гдеХ — выбранный вами процент от оптимальной f
Вы можете, например, задать X = 0.5 и быть уверенными, что половина рассчитанной на истории оптимальной f вряд ли когда-либо превысит в будущем реальную оптимальную f.
Недостатки тут те же, что и при оптимальном f, но вероятность переоценки риска, которая может привести к сливу счета, в этом случае существенно ниже.
Безопасная фракция
Расчет тоже довольно прост. Вместо максимальной убыточной сделки мы просто используем максимальную просадку в валюте. Работа по методу безопасной фракции менее рискованная, чем при использовании оптимальной фракции, но рост капитала будет проходить существенно медленнее, особенно на небольших депозитах.
Заключение
Тем же трейдерам, которые также не против высоких рисков, но при этом не любят терять депозиты слишком часто, я могу порекомендовать использовать более легкую безопасную фракцию или же разбавленную оптимальную фракцию, которые избавят от вероятности применения слишком большого риска.