Как я уже писал в статье "Автоматизация. Начало. Что и почему.", почти любая система автоматизации нуждается в информации о состоянии объекта управления. Там же я немного рассказал о том, какие датчики бывают. Однако, более подробное описание разных типов датчиков и особенностей работы с ними осталось за кадром.
В данной статье я немного подробнее расскажу про емкостные датчики, и их особенности. По большей части это обзорная статья, рассчитанная на начинающих и любителей. Профессионалы здесь не найдут ничего нового. Про обработку сигналов таких датчиков я расскажу в следующей статье.
Емкостный датчик, принцип работы
Как следует из названия, в основе этих датчиков лежит конденсатор, емкость которого изменяется под воздействием внешних факторов. А работа с датчиком сводится с измерению емкости, или измерению изменения емкости, этого конденсатора. Звучит просто, но реальность несколько сложнее.
Всем, из школьного курса физики, известна формула емкости плоского конденсатора
Из этой формулы видно, что наше внешнее воздействие может изменять три параметра конденсатора
- Расстояние между пластинами, обкладками, конденсатора
- Площадь одной из обкладок
- Диэлектрическую проницаемость среды между обкладками
При этом первые два параметра являются механическими, а диэлектрическая проницаемость определяется свойствами среды (диэлектрика).
Датчики использующие изменение расстояния между обкладками
Проще всего изменять расстояние между обкладками
Здесь внешнее воздействие показано в виде вектора силы F. Это воздействие изменяет расстояние между обкладками. Причем одной из обкладок может быть сам контролируемый объект, например, подвижный стол, шток, держатель инструмента. Возможна и несколько иная реализация этого принципа построения датчика
Здесь предполагается, что подвижная пластина является проводящей. Фактически, такой датчик состоит из двух конденсаторов. При этом подвижная обкладка является для них общей. Такая конструкция может быть полезной, если подключение подвижной обкладки к схеме измерения затруднительно. Да, подвижный элемент не обязательно является обкладкой конденсатора и может быть выполнен из диэлектрика, но об этом чуть позже.
Датчики использующие изменение площади перекрытия обкладок
Изменение площади обкладок тоже возможно, например, так
Здесь подвижная обкладка движется параллельно неподвижной так, что расстояние между ними не изменяется. При этом площадью обкладки конденсатора будет площадь перекрывающейся части пластин, которая и изменяется при перемещении. На рисунке она ограничена пунктиром.
На первый взгляд кажется, что такая конструкция датчика менее удобна и, при этом, не отличающейся принципиально от предыдущей. Однако, разница весьма существенна. Дело в том, что изменение расстояния между обкладками становится неприменимым, при большой величине перемещения. Зато параллельное смещение не имеет, в разумных пределах, такого ограничения.
Точно так же, как в предыдущей конструкции, мы можем разделить неподвижную обкладку на две части и подключить их к схеме измерения
Датчики использующие изменение диэлектрической проницаемости
Это самый интересный, и самый общий случай. Диэлектрическая проницаемость разных материалов различна. Для вакуума она равна 1, однако, этот случай для нас особого интереса не представляет. Диэлектрическая проницаемость воздуха очень блика к 1 (1,0001959 при 20 градусах и нулевой влажности). Диэлектрическая проницаемость бензина примерно равна 2, а воды 81. У многих пластмасс диэлектрическая проницаемость лежит в пределах 2-8. Используемая для изготовления конденсаторов керамика обладает диэлектрической проницаемостью 10-200 и более.
Если диэлектрик не однороден, или занимает не все пространство между обкладками, то в формулу расчета емкости нужно подставлять эквивалентную диэлектрическую проницаемость. Так для двух слоев диэлектрика с разной проницаемостью емкость конденсатора будет определяться так
В случае датчиков, слоями диэлектрика могут являться, например, два слоя воздуха и некий материал, расположенный между обкладками.
Причем величина воздушных зазоров может быть разной с разных сторон, как это и показано на рисунке выше. Если известна диэлектрическая проницаемость объекта, мы можем таким образом определить его толщину. Если известна толщина, то можно определить диэлектрическую проницаемость и, в некоторой степени, отличить один материал от другого. Но это еще не самое интересное.
Если заполнить пространство между обкладками смесью диэлектриков с различающейся, но известной, диэлектрической проницаемостью, то можно определить процентный состав смеси. Например, так можно определить влажность древесины или почвы.
Вот так, например, можно реализовать подсчет движущихся объектов
Причем обкладки датчика могут располагаться не с двух сторон объектов, а с одной стороны. Если в качестве объектов используются зубцы шестерни, то можно измерить скорость ее вращения. А если зубцы рейки, то величину перемещения. При этом объекты (в том числе, зубцы) не обязаны быть проводящими. Достаточно, что бы их диэлектрическая проницаемость была выше, чем у воздуха. Причем чем больше разница, тем лучше.
Так же, можно определить, какая часть датчика заполнена объектом
Здесь датчик можно представить в виде двух включенных параллельно конденсаторов. Первый заполнен диэлектриков на глубину L2. Второй заполнен только воздухом на глубину L3. Степень заполнения получается расчетом. На самом деле, промежуток L3 не обязательно должен быть заполнен воздухом. Вполне возможна ситуация, когда L2 заполнен водой, а L3 бензином, например. И это позволяет определить уровень воды находящейся под слоем топлива.
Разумеется, возможно построение датчиков по схемам, показанным для датчиков с изменением расстояния между обкладками или площади обкладок, которые были приведены выше. Только подвижные элементы будут не проводящими. Это снижает чувствительность датчиков, но они сохраняют работоспособность. Я не буду приводить формулы расчета емкости для этих случаев.
Особенности емкостных датчиков
Емкостные датчики, не смотря на свою конструктивную простоту, не так просты в работе. Давайте рассмотрим некоторые из их важных особенностей. При этом собственно обработка сигнала с емкостных датчиков будет рассматриваться в следующей статье.
Очень высокое выходное сопротивление
Это одна из самых важных особенностей. Поскольку обкладки датчика разделены слоем изолятора, сопротивление датчика очень высокое. Это необходимо учитывать при разработке схем обработки сигналов с емкостных датчиков. Повышенные токи утечки, например, вызванные загрязнением поверхности печатной платы блока электроники или недостаточной защитой от влажности, могут привести, в некоторых случаях, даже к полной неработоспособности.
Низкая помехоустойчивость
Это следствие высокого сопротивления датчика. Обкладки датчика, фактически, являются антеннами, которые прекрасно улавливают помехи. Поэтому требуется экранирование датчика, соединительных проводников и схемы обработки. Возможны и другие решения, например, использованием коаксиальной конструкции датчика. Если этого недостаточно, или невозможно, то нужно применять методы фильтрации и усреднения.
Высокий уровень генерации помех
Работа с емкостными датчиками сводится к измерению их емкости. Более подробно это будет рассмотрено в следующей статье. Но уже сейчас можно сказать, что измерение выполняется не на постоянном токе. А значит, обкладки датчика не только являются не только антеннами принимающими помехи, но и антеннами излучающими помехи.
Проблема решается экранированием, снижением амплитуды переменного (импульсного) напряжения на обкладках датчика, уменьшением скорости изменения напряжения. Возможны и специальные конструктивные решения.
Собственная паразитная емкость датчика
Работая с емкостным датчиком мы, фактически, используем не абсолютное значение емкости, а величину ее изменения. При этом величина изменения часто является весьма малой. Что бы чувствительность датчика, которая определяется отношением величины изменения к полной емкости датчика, была выше, собственная (паразитная) емкость датчика должна быть как можно меньше. Это тем важнее, чем меньше диэлектрическая проницаемость измеряемого объекта. Поскольку проводники от обкладок датчика до схемы обработки вносят ощутимый вклад в паразитную емкость их необходимо делать как можно более короткими. По этой причине большинство емкостных датчиков конструктивно объединены со схемами обработки. И выходным сигналом датчика, в этом случае, является выходной сигнал схемы обработки.
Характеристики емкостных датчиков нелинейны
В большинстве случаев, емкость датчика изменяется нелинейно даже при линейном изменении внешнего воздействия. Это не является существенной проблемой, если от датчика требуется определение порогового состояния, например, заданного минимального расстояния до объекта. Но если датчик используется для измерения непрерывной величины, например, уровня жидкости в емкости, такая нелинейность должна учитываться или схемой обработки, или схемой управления.
Чувствительность к расположению датчика
И обкладки датчика, и соединительные проводники, и элементы схемы обработки сигнала, обладают емкостью относительно окружающих предметов, включая нашу планету. Если автоматическая калибровка датчика не предусмотрена, а условия работы изменились, например, к датчику подошел оператор, или блок измерения переместили со деревянного стола на металлический, датчик может выдавать неверные данные.
Эту проблему можно решать конструктивно, схемотехнически, алгоритмически. Для регистрации пороговых событий хорошим методом является автоматическая калибровка и фильтрация во времени, что позволяет отделить реальное событие от фонового. При измерении непрерывных величин требуются более сложные, комбинированные, способы.В простых случаях возможно ограничиться ручной калибровкой при установке датчика.
Кстати, именно данная особенность приводит к сбоям простых самодельных систем полива растений, которые используют емкостные датчики. Если система используется для полива растения в горшке на подоконнике, или на полу, то датчик будет реагировать и на то, к растению подошел человек. Это можно устранить алгоритмически. По той же причине невозможно откалибровать емкостный датчик влажности почвы на лабораторном столе и потом использовать его для полива в теплице или на грядке. Нужна калибровка датчика именно в том месте, где он будет применяться. И в тех датчиках, которые я упоминал в статье "Влажность почвы. Почему все так не просто?" я все это учитываю.
Область применения емкостных датчиков
Емкостные датчики применяются достаточно широко. Я ограничусь лишь небольшим списком:
- Пожалуй, самым известным их применением являются сенсорные экраны и прочие сенсорные элементы управления.
- Различные измерительные приборы
- Автоматические производственные линии (подсчет предметов, контроль наличия предмета, контроль заполненности емкости
- Измерители уровня жидкостей и сыпучих тел
- Датчики близости
- Концевые датчики
Емкостные датчики выпускаются серийно, включая различные исполнения повышенной защищенности (например, взрывобезопасные). При этом есть датчики разной точности и разной дальности от контролируемых объектов. Емкостные датчики достаточно просты и дешевы, при этом обладают высокой надежностью. Но при этом требуют учета своей специфики. Впрочем, как и любые другие датчики.
Заключение
Я кратко, практически обзорно, рассказал о том, как работают емкостные датчики и какие особенности они имеют. В следующей статье поговорим о том, как обрабатывать сигналы с таких датчиков. То есть, о том, как устроены те самые "схемы обработки".