Всем привет. Сегодня поговорим на тему математики.. Кто-то ее понимает, кто-то нет. Ничего страшного. Сейчас разберем. А откуда вообще взялась математика?
Небольшая просьба: понравилась статья? ставь палец вверх и подписывайся!
Матема́тика —наука о структурах, порядке и отношениях, исторически сложившаяся на основе операций подсчёта, измерения и описания формы объектов. Математические наборы создаются путём идеализации свойств реальных или других математических объектов и записи этих свойств на формальном языке. Математика не относится к ествественным наукам , но широко используется в них как для точной формулировки их содержания, так и для получения новых результатов. Математика — фундаментальная наука, предоставляющая (общие) языковые средства другим наукам; тем самым она выявляет их структурную взаимосвязь и способствует нахождению самых общих законов природ.
Традиционно математика делится на теоретическую, выполняющую углублённый анализ внутриматематических структур, и прикладную, предоставляющую свои модели другим наукам и инженерным дисциплинам, причём некоторые из них занимают пограничное с математикой положение. В частности, формальная логика может рассматриваться и как часть философских наук , и как часть математических наук; механика — и физика, и математика; информатика, компьютерные технологии и алгоритмика относятся как к инженерии, так и к математическим наукам и т. д. В литературе было предложено много различных определений математики.
Академиком Колмогоровым предложена такая структура истории математики:
- Период зарождения математики, на протяжении которого был накоплен достаточно большой фактический материал;
- Период элементарной математики, начинающийся в5-6 векеи завершающийся в конце 16 века («Запас понятий, с которыми имела дело математика до начала 18века, составляет и до настоящего времени основу „элементарной математики“, преподаваемой в начальной и средней школе»);
- Период математики переменных величин, охватывающий14-18 века, «который можно условно назвать также периодом „высшей математики“»;
- Период современной математики — математики 19-21 века, в ходе которого математикам пришлось «отнестись к процессу расширения предмета математических исследований сознательно, поставив перед собой задачу систематического изучения с достаточно общей точки зрения возможных типов количественных отношений и пространственных форм».
Развитие математики началось вместе с тем, как человек стал использовать абстракции сколько-нибудь высокого уровня. Простая абстракция —числа ; осмысление того, что два яблока и два апельсина, несмотря на все их различия, имеют что-то общее, а именно занимают обе руки одного человека, — качественное достижение мышления человека. Кроме того, что древние люди узнали, как считать конкретные объекты, они также поняли, как вычислять и абстрактные количества, такие, как время: дни, сезоны, года. Из элементарного счёта естественным образом начала развиваться арифметика:сложение, вычитание , умножение и деление чисел.
Развитие математики опирается на письменности и умение записывать числа. Наверно, древние люди сначала выражали количество путём рисования чёрточек на земле или выцарапывали их на древесине. Древние инки, не имея иной системы письменности, представляли и сохраняли числовые данные, используя сложную систему верёвочных узлов, так называемые кипу. Существовало множество различных сиситем . Первые известные записи чисел были найдены в папирусе АХимесу, созданном египтянами Египта. Индская цивилизация разработала современную десятичную систему счисления, включающую концепцию нуля.
Исторически основные математические дисциплины появились под воздействием необходимости вести расчёты в коммерческой сфере, при измерении земель и для предсказания астрономических явлений и, позже, для решения новых физических задач. Каждая из этих сфер играет большую роль в широком развитии математики, заключающемся в изучении структур , пространств и изменений.
Математика изучает воображаемые, идеальные объекты и соотношения между ними, используя формальный язык. В общем случае математические понятия и теоремы не обязательно имеют соответствие чему-либо в физическом мире. Главная задача прикладного раздела математики — создать математическую модель, достаточно адекватную исследуемому реальному объекту. Задача математика-теоретика — обеспечить достаточный набор удобных средств для достижения этой цели.
Содержание математики можно определить как систему математических моделей и инструментов для их создания. Модель объекта учитывает не все его черты, а только самые необходимые для целей изучения (идеализированные). Например, изучая физические свойства апельсина, мы можем абстрагироваться от его цвета и вкуса и представить его (пусть не идеально точно) шаром.
(понравилась статья? ставь палец вверх и подписывайся!)