Введение.
Продолжаем изучать современную электронику на простом уровне. В первой части мы рассмотрели вещества с точки зрения проводимости, изучили основы зонной теории твёрдых тел. Сегодня же мы переходим к типам полупроводников.
Полупроводники бывают 2-ух видов: собственные и примесные, в свою очередь примесные разделяются на донорные и акцепторные.
Будь проще и говори на понятном для людей языке, потому что очень многие стараются говорить на такой терминологии и так умно, что можно час слушать, а потом спросить его, что ты понял из всего этого сказанного, человек не может абсолютно ничего пересказать. Виталий Владимирович Кличко.
Собственный полупроводник. Дырки.
Как можно догадаться собственным называется такой полупроводник, который не имеет примесей. Для примера возьмём Si (кремний).
Этот элемент имеет 4 электрона на внешней оболочке (мы берём внешнюю оболочку, так как внутренние не участвуют в атомном обмене, об этом в часть 1). Кремний легко разделяет свои электроны с другими атомами кремния, образуя при этом валентные связи. Валентная связь - это такая связь, при которой атомы делят между собой общую пару электронов.
Валентную связь можно представить себе как детей (атомы), которые обменялись игрушками (электронами) друг с другом и продолжают играют вместе.
Электроны во всех связях будут присутствовать только при температуре абсолютного нуля. Если температура не равна нулю, то как известно, электроны имеют вероятность перейти из валентной зоны в зону проводимости. Чем выше температура - тем больше вероятность.
При температуре выше нуля некоторые связи разрушатся, а электроны перейдут в зону проводимости, оставив на своём месте нескомпенсированный положительный заряд - дырку.
Так как атом система нейтральная, то при отщеплении отрицательного заряда должен остаться равный по величине положительный заряд.
Дырка - это "частица", которая по массе равна электрону, но имеет положительный заряд.
Получается, что при переходе электрона из валентной зоны в зону проводимости в валентной зоне остаётся дырка, то есть вакантное место для другого электрона.
При приложении внешнего напряжения электроны будут принимать участие в процессе протекания тока. Таким образом можно сделать вывод, что собственный полупроводник (его ещё называют полупроводником i-типа) - это полупроводник без примесей, в котором носители заряда появляются только за счёт теплового воздействия. Так же стоит отметить, что количество дырок равно количеству электронов.
Донорный полупроводник. Электронная проводимость.
Донорный полупроводник - это полупроводник, в который добавили донорную примесь. Донор, значит что-то отдаёт. В нашем случае донор отдаёт избыточные электроны. Рассмотрим в качестве примера атом Si, в который в качестве донорной примеси добавили атом F (фосфор).
Фосфор имеет 5 электронов на внешней оболочке, 4 из которых легко образуют валентную связь с атомами кремния. Пятый электрон остаётся не задействован ни в одной связи.
Так как пятый электрон слабо связан с атомом фосфора, то это даёт ему возможность легко оторваться. Для этого нужно приложить совсем небольшую энергию, которая называется энергией активации примеси.
Этот свободный электрон образует собственный энергетический уровень в запрещённой зоне, поэтому энергия активации примеси достаточно мала.
Именно электроны без связи становятся основными носителями заряда, так как им легче перескочить в зону проводимости. Переходы из валентной зоны так же возможны, но очевидно, их будет меньше, так как им нужно преодолеть больший участок запрещённой зоны. В итоге можно сказать, что донорный полупроводник - это полупроводник, в который ввели донорную примесь, вследствие чего в запрещённой зоне образовался новый, донорный уровень, с которого свободные, донорные электроны, легко переходят в зону проводимости. Переходы из валентной зоны в зону проводимости под действием температуры так же имеют место, но менее интенсивно, по сравнению с переходами донора.
Этот тип полупроводника так же называют n-типом, так как основные заряды - электроны, заряжены отрицательно (от англ. negative).
Акцепторный полупроводник. Дырочная проводимость.
Акцепторный полупроводник - это полупроводник, в который добавили акцепторную примесь. Акцептор, значит что-то принимает. В нашем случае акцептор принимает электроны из других связей. Рассмотрим в качестве примера атом Si, в который в качестве акцепторной примеси добавили атом B (бор).
Бор имеет 3 электрона на внешней оболочке, каждый из которых легко образуют валентную связь с атомами кремния. Однако остаётся одна незадействованная связь, вакантное место для электрона.
Это вакантное место не несёт заряда, так как атом бора нейтрален. При температуре выше абсолютного нуля электрон из соседнего атома может переместиться в вакантное место, оставив после себя дырку. В эту дырку может переместиться другой электрон, оставив свою дырку, и так далее. Получается, что теперь носителем заряда (положительного) является дырка.
Эта дырка образует акцепторный уровень в запрещённой зоне. На этот уровень перемещаются электроны, оставляют после себя дырки, которые являются основными носителям.
В итоге можно сказать, что акцепторный полупроводник - это полупроводник, в который ввели акцепторную примесь, вследствие чего в запрещённой зоне образовался новый, акцепторный уровень, на который легко переходят электроны, оставляя после себя дырки для последующих переходов.
Этот тип полупроводника так же называют p-типом, так как основные заряды - дырки заряжены положительно (от англ. positive).
Рассмотрели основные типы полупроводников. В следующей статье рассмотрим p-n переход - основу современной электроники.