Найти тему
⚠️ Инженерные знания

Как измерения создают проблемы в квантовом мире?

Думаю, что уже много раз вы слышали про такое явление, как парадокс наблюдателя. Если сильно упростить его понимание, то он означает очень простое явление: если проводить измерения, то можно влиять на состояние системы. Сама идея о том, что наблюдение за системой изменяет хоть как-то её свойства, кажется абсурдной.

Измерение чёрной дыры микрометром
Измерение чёрной дыры микрометром

Как представить себе влияние измерений?

На практике оно звучит даже интереснее. Если посмотреть в микроскоп на частицу, то эта частица будет менять своё состояние. Понятно, что речь далеко не о макрочастицах и не об оптическом микроскопе, а о более серьезных и "тонких" устройствах, но суть остаётся прежней.

Конечно же, главный вопрос тут только один и, я думаю, вы тоже задумались именно об этом в первую очередь. Как это вообще может работать? Что за магия такая? Между тем, квантовая физика довольно часто сталкивается с парадоксом наблюдателя и уже воспринимает его как должное.

Что происходит при измерении?

Говоря научным языком, состояние системы может быть описано группой уравнений. Это квантовая функция. Если происходят измерения, то квантовая функция коллапсирует и из квантового состояния, где частица сразу и тут и там с некоторой долей вероятности, частица приобретает обычное состояние, описываемое классической механикой.

Измерения в квантовом мире другие
Измерения в квантовом мире другие

Но вот как так получается, что измерения могут влиять на физику процесса? Может быть тогда и если смотреть на вареную картошку, то она будет и остывать быстрее?

Пример про картошку более абстрактный и я уже однажды рассказывал, что работал у нас один химик, который единственный из всех мог успешно проводить ряд экспериментов. Остальные сотрудники не могли это сделать. Он был просто уверен, что получится так, как он считает нужным и оно всегда получалось. В науке есть ряд подобных задокументированных наблюдений. Один эффект плацебо чего стоит. Или шуточный эффект Паули. Но это уже стык философии и физики, что не является целью настоящей статьи. Посмотрите ролик про подобные явления.

Измерение с физической точки зрения

Но если вернуться к физической трактовке явления, то начать стоит с определения термина "измерение". Нужно чётко понимать, чем является измерение с физической точки зрения.

Измерение - это процесс, когда почти невесомые квантомеханические системы приходят в соприкосновение с классическими измерительными приборами.

Но это только одно из вменяемых определений явления. Если покопаться в статьях, то можно обнаружить, что конкретного описания термина "измерение" фактически не существует.

Можно было бы списать всё это на недостаточное понимание происходящих процессов, подкрепленное отсутствием хорошего оборудования. Но есть уже множество публикаций и исследований, которые подтверждают реальное существование рассматриваемой проблемы. Например в журнале Physical Review Letters была статья Tracking the Dynamics of an Ideal Quantum Measurement, где описывалось изучение зависимости суперпозиции атома стронция от измерений и показана однозначная зависимость.

Измерения в классической физике

Понятно, что при механическом измерении есть обязательно взаимодействие
Понятно, что при механическом измерении есть обязательно взаимодействие

Пока всё в рамках классической теории оно как-то увязывается в некоторую логику. Измерение действительно физически воздействует на систему. Например, если прибор излучает видимый свет и проводит измерение с его помощью, то он однозначно скажется на поведении системы. По этому принципу можно описать даже влияние простого человеческого взгляда. Ведь всё это работа с потоками энергии, которые окажут влияние на систему.

Но усовершенствование современных измерительных приборов привело к тому, что граница между макроприборами и микроприборами стала размытой, а эффект сохранился. Теперь непонятно, где классический измерительный прибор, а где квантовый. Парадокс наблюдателя так никуда и не пропадал. Он всё также продолжает существовать.

Измерение как способ уничтожения информации

Изменился и взгляд на суть физического процесса, происходящего при измерении. Если раньше это был только лишь коллапс волновой функции, то сейчас на этот момент наложились развития представлений о квантовом мире. Теперь коллапс волновой функции, пропущенный через призму о многомировой вселенной, стал описываться не только как превращение квантовой системы в стандартную, а как факт фиксации только лишь одной из вселенной со стандартной для неё картиной.

В эту кастрюлю с борщом упало и как таковое понимание информации в физике. А, точнее сказать, отсутствие этого полноценного понимания. Однако, если принять на минутку, что всё есть информация, то логика работы эффекта наблюдателя станет куда более простой и понятной и физическая суть измерения тоже.

Возьмем например измерение спина частицы. Измерение происходит на установке Штерна-Герлаха и заключается в вычислении спина на базе магнитной составляющей этого понятия.

Установка Штерна-Герлаха
Установка Штерна-Герлаха

Тут довольно сложная и объемная теория. Коротко - измеряется магнитный момент. Получается забавный парадокс - измерение вдоль одного направления уничтожает полученную ранее информацию о двух других направлениях.

Каждое новое измерение приводит к обновлению информации. Или, если сказать это красиво, каждое новое измерение стирает любую полученную ранее информацию и прописывает новую. Новая информация описывает новое состояние частицы. Что же, боюсь более конкретного и точного объяснения физики процесса пока попросту нет. Если у вас есть какие-то мысли на этот счёт, то обязательно опишите свои представления в комментариях.

Обязательно подписывайтесь, лайкайте и возвращайтесь за новым контентом на проект! Материалы выходят регулярно!

Не забывайте читать новые статьи на сайте проекта

Наука
126K интересуются