Задача: Длины сторон треугольника равны а, b и c. Найдите угол γ этого треугольника, лежащий против стороны c, если выполняется соотношение c^2 = a^2 + b^2 + √3 * ab.
©Математическая Вертикаль. Учебное пособие для общеобразовательных организаций. Автор: М.А.Волчкевич.
Решение:
По теореме косинусов: c^2 = a^2 + b^2 - 2ab * cos γ, приравняем правые части соотношения и полученного по теореме косинусов выражения:
a^2 + b^2 - 2ab * cos γ = a^2 + b^2 + √3 * ab
- 2ab * cos γ = √3 * ab
cos γ = -√3/2
По таблице значений cos 150° = -√3/2 ⇒ γ = 150°.
Ответ: 150°.
Задача решена.