Найти тему
МаТеМеМиКа

Как понять тригонометрию.

Привет.
Какое же страшное слово "тригонометрия". Её боятся многие школьники, даже не берутся порой решать задания на экзамене, где она присутствует. Порой это из-за неопределенности в том плане, какие сюрпризы вылезут при ее решении. Да и чтобы владеть ее языком, нужно знать и уметь замечать большое количество формул и свойств. Однако, все не с ней не так уж и сложно порой. Бывает достаточно знать всего пару простых формул, чтобы решать такие примеры. Да и хоть бывает, что она и сложна, но зато обладает своими красотой и шармом.


В этой статье не будут рассматриваться лишь основные определения, связанные с тригонометрией, поскольку тем, связанных с ней, сильно велико. Здесь мы вкратце познакомимся с тем, что такое тригонометрические функции и как они вводятся, а также узнаем основные формулы, которыми будет достаточно нам пользоваться для решения задач с ней.

Начнем с того, какие объекты входят в её язык и как они вводятся. Сразу приходят на ум такие штуки, как синус, косинус, тангенс и котангенс. Также есть еще некоторые функции, такие как секанс и косеканс. Вводятся все эти функции посредством соотношений между сторонами и углами в прямоугольном треугольнике.

-2


Так синусом угла в таком треугольнике является отношение противолежащего к этому углу катета к гипотенузе.

Косинусом же является отношение прилежащего катета к гипотенузе.

Тангенс же это отношение противолежащего катета к прилежащему катету. И если проделать некоторые вычисления, то получаем, следующее выражение:

-3


Котангенс же это обратная функция тангенсу, то есть, это отношение прилежащего катета к противолежащему, или:

-4


Соотношения же для таких функций, как секанс и косеканс следующие:

-5


Далее, все мы знаем теорему Пифагора. А давайте проделаем с ней некоторые преобразования - поделим и левую и правую части на гипотенузу. Получаем основное тригонометрическое тождество, одно из важнейших соотношений тригонометрии. Оно связывает синус и косинус одним выражением, что позволяет легко находить одно из другого, а также, позволяет упрощать некоторые выражения.

-6


Далее, как мы видим, что тригонометрия в этом случае-очень удобный аппарат для нахождения сторон и углов прямоугольного треугольника. Однако, чтобы из, допустим, синуса угла найти сам угол, нам нужны обратные функции к ним. Такие функции есть. Это арксинус, арккосинус, арктангенс и арккотангенс и т.д.. О них поговорим немного позднее. Однако, все же кое-что затронем. Запомнить все числовые значения тригонометрических функций - это довольно не простая задача. Да и вычисление порой даётся не легко, поскольку их никто вот так через треугольники не вычисляет, т.к. все же для этого нам нужно знать стороны этих треугольников. Их вычисляют другими способами. И вычисленные значения лежат в таблице, называемой таблицей Брадиса, в которой можно легко посмотреть эти значения. Да и она не нужна сейчас, когда у всех под рукой калькуляторы. Ниже приведена таблица основных значений, которые достаточно знать наизусть. Видно корреляцию значений, что можно заметить, например, в том же самом основном тождестве. Также видно, что значение синуса 90 у нас 1, то есть, противолежащая сторона к углу в 90° - это гипотенуза, и при делении ее на саму себя будет 1. Из тождества косинус 90° будет 0. Некоторые значения тангенса и котангенса отсутствуют в ней вследствие деления на 0 в формулах выше.

-7

Таблица Брадиса.
Таблица Брадиса.


Далее, как можем заметить, мы располагали углами от 0 до 90 градусов. А чему же будет равен sin(91°)? Рассмотрим единичную окружность - окружность с радиусом в единицу. проведём этот радиус произвольным образом и опустим из точки пересечения радиуса с окружностью перпендикуляры на оси координат. Получаем прямоугольные треугольники, из которых видим, что координата х этого пересечения - это косинус нашего угла, а координата у в свою очередь - это синус. Видно, что максимальное значение синуса, также, как и косинуса - это единица (при 90°). И что же будет при 91°? Как видно, синус будет уменьшаться вместе с координатой у точки пересечения, и он будет равен sin(89°). Координата х же, которой будет равен косинус, будет отрицательной, из-за чего получаем отрицательный косинус.

Единичная окружность.
Единичная окружность.

Далее, на следующей картинке приведено то, какие будут иметь знаки наши тригонометрические функции в разных четвертях координатной плоскости.

-10


Также для простоты вычисления синусов и других функций больших или отрицательных углов, есть следующие соотношения. Во-первых, так будут себя вести функции в случае отрицательного аргумента.

-11


Во-вторых, для нахождения значений для больших углов, применяют формулы приведения: если к аргументу функции прибавляется число, кратное π/2, то мы меняем синус на косинус, косинус на синус, тангенс на котангенс и наоборот. Далее нам следует проверить знак получившегося выражения по первоначальной функции: в какой четверти будет находиться значение аргумента первоначальной функции и по ней определить знак.

-12


Эти правила, как видно, сильно упрощают нам нахождение таких значений.

Тригонометрия является очень удобным аппаратом во многих сферах науки и техники: математике, механике, квантовой физике, оптике, машиностроение... Да практически везде, где есть что-то связанное с физикой и производством, а также, где требуются расчеты, она присутствует. И от нее никуда не уйти, поскольку её язык удобен, в каком-то плане прост и универсален. Даже порой в совсем неожиданных местах она может вылезти. Волновые процессы, которые полностью пронизывают нас от сетей 4G до света лампочки дома, от гравитационных волн до звуков в комнате, все это описывается тригонометрией, это все её язык. И поэтому, она очень важна, и если вы свяжите свою жизнь с точными науками, знание тригонометрии вам безусловно понадобится.

Сегодня мы поговорили о такой интересной теме в математике, как тригонометрия. Далее мы разберём поподробнее некоторые аспекты, связанные с ней. Подписывайтесь на канал, ставьте лайки, пишите свои комментарии. Также предлагайте темы для будущих разборов.

Пока.

#школа #егэ #образование #образованиедетей #образованиевроссии #математика #матан