Нам нужно на некоторое время оторваться от рассмотрения методов измерений и вернуться с погрешностям. Я знаю, погрешности любят не многие, но уметь работать с ними необходимо. Большинство современных измерительных приборов состоят из нескольких компонентов (узлов), которые объединены в единое целое. Мы не раз говорили, что итоговая погрешность измерения равна сумме погрешностей метода, методики, измерительных преобразователей, приборов, методов обработки результата. Но не разбирались, а как именно эта сумма вычисляется? Сегодня этим и займемся.
В статье не получится избежать математики, но она будет довольно простой.
Еще раз, кратко, о погрешностях
Давайте вспомним, что мы уже знаем о погрешностях из того, что нам сегодня потребуется. Прежде всего, погрешности можно разделить на абсолютную, относительную, приведенную
Приведенная погрешность отличается от относительной тем, что знаменателем является не истинное, а нормирующее значение величины. Чаще всего, в качестве нормирующего значения выступает верхний предел соответствующего поддиапазона измерительного прибора.
Я уже рассказывал, зачем потребовалась приведенная погрешность. Дело в том, что мы не можем по результату измерения и параметрам погрешности прибора определить истинное значение величины. Не смотря на то, что приведенные выше формулы позволяют, на первый взгляд, усомниться в этом утверждении. Однако, погрешности это случайные величины, работать с которыми нужно по правилам математической статистики. И это очень важно.
Вы можете даже возмутиться "Как так, мы же знаем, что погрешность может быть систематической и случайной! Получается, что и систематическая погрешность случайна? Автор ничего не перепутал?". Нет, автор ничего не перепутал. Давайте разберемся и вы сами все увидите.
Действительно, погрешность измерительного прибора, да и собственно измерения, можно представить как сумму систематической и случайной погрешностей. Причем для систематическая погрешность может быть как неизменной, так и изменяющейся. Примером неизменной систематической погрешности является "смещение нуля", например, смещение начального положения стрелки прибора относительно нулевого деления. Примером изменяющейся систематической погрешности может быть "смещение нуля" в цифровом приборе, например, зависящее от температуры.
Систематическая погрешность конкретного экземпляра прибора прогнозируема в конкретных условиях измерения. И мы можем провести процедуру калибровки (не путать с регулировкой!) для определения систематической погрешности. Проблема в том, что это будет касаться лишь конкретного экземпляра прибора в условиях метрологической лаборатории. Для другого экземпляра прибора, других условий, или через некоторое время, погрешность может измениться. Причем не только по величине, но и по знаку. Но он останется прогнозируемой. В отличии от погрешности случайной.
То есть, для измерительных приборов в целом, а не конкретного экземпляра в конкретных условиях, даже систематическая погрешность будет величиной случайной, задающей границы возможных погрешностей для каждого конкретного экземпляра. И в паспортах измерительных приборов погрешность указывается именно как максимальная, определяющая границы, а не точное значение погрешности.
Систематическая погрешность может быть уменьшена с помощью различных ухищрений. Точно так же, как случайная погрешность может быть снижена с помощью вычисления среднего арифметического. Но сегодня мы этих вопросов касаться не будем.
Погрешности узлов измерительных приборов
Все сказанное выше применимо не только к измерительным приборам в целом, но и к отдельным компонентам приборов. За исключением приведенной погрешности, конечно. Давайте рассмотрим самый простой пример - постоянный резистор. Например, металлопленочный резистор MBB0207 сопротивлением 100 кОм. Вот документация на него
Эти резисторы обладают точностью сопротивления 1%. То есть, для нашего резистора реальное сопротивление будет лежать в диапазоне от 99 кОм до 101 кОм. Но это еще не все. Любой резистор имеет ненулевое значение ТКС (температурный коэффициент сопротивления). В данном случае - 5 Ом на каждый градус Цельсия (для сопротивления 100 кОм). Но и это еще не все. Резисторы подвержены старению, причем скорость старения зависит от рассеиваемой резистором мощности. Для нашего резистора сопротивление может измениться а пределах 0.25% за 1000 часов работы при рассеивании номинальной мощности. И на 0.5% за 8000 часов. В документации все указано.
Таким образом, не только реальное сопротивление может отличаться от номинала, но оно зависит и от температуры, и от времени наработки. Давайте посмотрим, что это для нас означает. Пусть рабочая температура резистора достигает 50 градусов. Номинальное сопротивление указывается для 25 градусов, так что при 50 градусах сопротивление изменится на
5 * 25 = 125 Ом
что составляет 0.125%. С одной стороны, это мало, по сравнению с точностью сопротивления. Но, с другой стороны, это может потребоваться учитывать. 1000 часов это примерно 1 квартал (3 месяца) ежедневной работы по 8 часов в день. Не много, но изменение сопротивления может достигать 0.25%. Итого, для заданных рабочих условий через примерно 3 месяца работы точность сопротивления резистора будет не 1%, а 1.375%!
Несколько неожиданный результат для части читателей. Но совершенно закономерный. Прецизионные резисторы не только имеют более высокую начальную точность, но и меньший ТКС. Например, С2-29В группы С имеет ТКС 10ppm, что в 5 раз ниже. Прецизионные резисторы и меньше изменяют сопротивление при старении. Но и это еще не все. На сопротивление влияет и атмосферное давление. И влажность воздуха, что наиболее значимо для высокоомных резисторов. Сопротивление резистора зависит и от приложения механической нагрузки.
Но давайте не будем слишком углубляться. Все эти тонкости нужны профессионалам, которые разрабатывают высокоточные устройства. Большинству читателей достаточно иметь представление, что оказывает влияние на сопротивление резистора, которое указано его маркировкой.
Давайте теперь рассмотрим простейший делитель напряжения, например, 1:10. Верхнее плечо будет иметь сопротивление 900 кОм, а нижнее 100 кОм. Да, я знаю, что 900 кОм не входит в стандартный ряд, нам сейчас это не важно. Точность 1%, резисторы новые, температура 25 градусов. То есть, сопротивление резистора верхнего плеча будет лежать в диапазоне от 891 кОм до 909 кОм. А нижнего плеча, как мы уже считали, в диапазоне от 99 кОм до 101 кОм.
Пусть на делитель подано напряжение 10 В, какое напряжение мы можем получить на выходе? Расчетное, исходя из номинальных сопротивлений резисторов, 1 В. А с учетом погрешностей? Мы не можем точно сказать. Мы можем лишь определить границы диапазона, когда отклонения сопротивлений резисторов максимальны и имеют разные знаки. Выходное напряжение будет лежать в диапазоне от 0.98 В до 1.02 В.
Давайте оценим относительную погрешность выходного напряжения. В обоих случаях отклонение составляет 0.02 В. То есть, относительная погрешность (модуль относительной погрешности) 2%. Все точно так, как и говорил в статье про учет тепла про расходомеры. И все верно, но с одним небольшим нюансом - это предельные границы, максимальная погрешность, самый плохой случай.
Суммирование арифметическое и геометрическое
Приведенный выше пример определения погрешности делителя напряжения является пессимистичным. Такой пессимизм действительно бывает нужен для задач требующих максимальной точности. Но во многих случаях достаточной будет оценка "типового случая". Что же это за случай такой?
Давайте вспомним, что даже систематическая погрешность для каждого отдельного экземпляра будет случайной величиной для большой выборки (например, партии измерительных приборов или резисторов)
Если измерить сопротивления резисторов в большой партии и построить график плотности вероятности (гистограмму), то мы увидим хорошо знакомое нам нормальное распределение. Часть резисторов будет иметь сопротивление выше номинала (отклонение положительное), часть ниже (отклонение отрицательное). Для большинства резисторов отклонения будут малы, значительно меньше предельно допустимой погрешности. Резисторы, отклонение сопротивления которых превышает установленные границы (в нашем примере 1%) являются браком.
Эти границы, которые заданы как предельная величина отклонения, являются одновременно и доверительным интервалом. Мы видим, что вероятность рассмотренных ранее предельных случаев меньше, чем вероятность малых отклонений. Поэтому и отклонение выходного напряжения, ожидаемое, вероятно будет меньше, чем предельные случаи. И это действительно так.
Давайте вспомним, что в теории вероятности суммирование статистически независимых (некоррелированных) случайных величин осуществляется путем сложения их дисперсий. Отклонения сопротивлений наших резисторов действительно независимы и, как мы уже видели, являются случайными в большой партии. А значит, мы можем выполнять суммирование отклонений, погрешностей, как суммирование дисперсий.
На практике более привычным является среднеквадратичное отклонение, которое равняется квадратному корню из дисперсии. И мы получаем классическую формулу геометрической суммы. Поскольку для резисторов погрешность указана как относительная, то как сумму относительных погрешностей. Вот так это выглядит в общем виде
Да, корень квадратный из суммы квадратов. И мы можем сказать, для нашего делителя напряжения итоговая погрешность равна 1.41%, а не 2%. Это более оптимистичный вариант оценки погрешности, который можно назвать тем самым "типовым случаем". Повторю, что такое определение суммарной погрешности возможно только для независимых погрешностей, причем с нормальным законом распределения плотности вероятности. Иначе формула будет иной. Кроме того, вспомним, что доверительный интервал суммы не равен сумме доверительных интервалов.
А теперь подумаем, являются ли отклонения сопротивлений резисторов вызванные изменением температуры независимыми? Это не такой простой вопрос. Но во многих случаях их нельзя считать независимыми. А значит, для суммирования нам придется использовать обычное арифметическое суммирование. Другими словами, мы должны по разному учитывать влияние различных составляющих погрешности каждого компонента на итоговую погрешность. Неверно просто взять суммарную погрешность отдельного компонента и рассчитать итоговую погрешность прибора через геометрическую сумму.
Это верно не только для вычисления погрешности измерительного прибора, но и для оценки погрешности всего измерительного эксперимента. То есть, погрешность измерения некоторой величины (прямая или косвенная) будет вычисляться как сумма всех погрешностей. Причем сумма геометрическая. Но некоторые составляющие этой погрешности могут суммировать и арифметически.
Коротко о записи результатов измерений с погрешностью
Существует старый спор между сторонниками "много знаков лучше" и сторонниками "без лишних знаков". Метрология на стороне последних.
Как вы помните, результат измерений может быть весьма "точным" по виду, но весьма посредственным по своему содержанию. Магия большого количества отображаемых на дисплее цифрового прибора цифр совратила не мало неокрепших умов. Разрешающая способность может быть большой, но вот точность не обязательно соответствует разрядности. А о том, что погрешность прибора определяется суммой погрешностей, забывают многие.
Запись результата измерения, если говорить строго, должна включать в себя и указание погрешности. Причем запись не должна вызывать ложного чувства повышенной точности. Например,
12.5 В ± 1 В
неправильно, так как десятые доли вольта указанная погрешность делает недостоверными. Правильно будет
12 В ± 1 В
Другой пример,
134 В ± 1%
правильный, так как 1% равняется 1.34 В, что делает последнюю цифру результата достоверной. Но
134 В ± 10%
будет неверно, так как абсолютное значение погрешности составит 13.4 В, а значит, последняя цифра результата недостоверна. Правильно будет
130 В ± 10%
Это кажется мелочами и излишним педантизмом, но это не так. При этом результаты измерений, которые используются в дальнейших расчетах для получения итогового результата, не должны округляться. Округляется только собственно итоговый результат. Дело в том, что округление промежуточных результатов вычислений и измерений вносит дополнительную погрешность. А ошибки имеют свойство накапливаться.
О погрешности равной половине цены деления шкалы
Весьма распространенным заблуждением является утверждение, что погрешность измерительного прибора всегда равна половине деления шкалы, половине цены деления. Это верно лишь для случаев, когда в паспорте прибора нет указания погрешности в явном виде. Если погрешность указана явно, следует руководствоваться именно ей, а не вглядываться деления шкалы!
Заключение
Да, как всегда кратко и довольно упрощенно. Но затронутые сегодня вопросы являются важными. Причем именно с практической точки зрения.