Найти в Дзене

Кодирование информации

В процессе восприятия, передачи и хранения информации живыми организмами,человеком,техническими устройствами происходит её кодирование.

Кодирование — это преобразование информации из одной ее формы представления в другую, наиболее удобную для её хранения, передачи или обработки.

В данной статье вы сможете подробно узнать о системе счисления.

Система счисления — символический метод записи чисел, представление чисел с помощью письменных знаков.

Символы, при помощи которых записывается число, называются цифрами.

Система счисления:

  • даёт представления множества чисел (целых или вещественных)
  • даёт каждому числу уникальное представление (или, по крайней мере, стандартное представление)
  • отражает алгебраическую и арифметическую структуру чисел.
«Человек придает кибернетическим машинам способность творить и создает этим себе могучего помощника» 
Ноберт Винер
«Человек придает кибернетическим машинам способность творить и создает этим себе могучего помощника» Ноберт Винер

Классификация систем счисления

Системы счисления подразделяются на позиционные и непозиционные системы счисления.

1. Позиционные системы счисления (СС) – это системы счисления, в которых количественный эквивалент каждой цифры (её вес) зависит от ее положения (позиции) в записи числа.
Позиционный принцип записи чисел состоит в том, что каждая цифра, содержащаяся в записи числа, занимает определенное место, называемое разрядом. Отсчет разрядов производится справа налево. Единица каждого следующего разряда всегда превосходит единицу предыдущего разряда в определенное число раз.
Достоинства позиционных систем счисления:

  • в позиционных системах счисления устранены все недостатки непозиционных:
  • в них можно записать любое число (как натуральное, так и действительное);
  • запись чисел компактна и удобна;
  • благодаря поразрядной организации записи чисел с ними легко проводить математические операции.

2. Непозиционная система счисления (СС) – это такая система счисления, что в записи числа каждая цифра имеет всегда одно и то же значение, т. е. ее «вес» не зависит от местоположения в числе.

Например, римская система счисления, где для обозначения цифр используются латинские буквы: I –1, V–5,  X–10,  L–50,  C–100, D–500, M–1000.

Правила записи чисел в римской системе счисления:

  • если большая цифра стоит перед меньшей, они складываются, например: VI – 6;
  • если меньшая цифра стоит перед большей, то из большей вычитается меньшая, причем в этом случае меньшая цифра уже повторяться не может, например: XL — 40;
  • цифры М, С, Х, I могут повторяться в записи числа не более трёх раз подряд;
  • цифры D, L, V могут использоваться в записи числа только по одному разу.

Основные недостатки непозиционных систем счисления:

  • в них нельзя записать любое число;
  • запись чисел обычно громоздка и неудобна;
  • математические операции над ними крайне затруднены.
  • Алфавитом системы счисления называется совокупность различных цифр, используемых в позиционной системе счисления для записи чисел. Например:
    Десятичная система: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
    Двоичная система: {0, 1}
    Восьмеричная система: {0, 1, 2, 3, 4, 5, 6, 7}
    Шестнадцатеричная система: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}
    Основанием позиционной системы счисления называется количество знаков или символов, используемых для изображения числа в данной системе счисления.

Базисом позиционной системы счисления называется последовательность чисел, каждое из которых задает количественное значение или «вес» каждого разряда.

В позиционной системе счисления любое вещественное число может быть представлено в развернутой форме.

Развернутая форма представления числа

А = ± (an-1* +an-2 *+ … +a0 ­*+a -1 *+a -2 * + … +a –m *)

Здесь:

  • А - само число,
  • q - основание системы счисления,
  • ai - цифры, принадлежащие алфавиту данной системы счисления,
  • n - число целых разрядов числа,
  • m - число дробных разрядов числа.
-3

Надеюсь, что данная информация была полезной для Вас и информативной.Подписывайся на мой канал. До новых встреч)

Наука
7 млн интересуются