Найти тему
N + 1

Как мы стали свидетелями заката «эры антибиотиков» — Часть 1

Оглавление

В ноябре 2015 года коллектив китайских ученых опубликовал в журнале Lancet статью, в которой подвел итоги многолетних наблюдений и сообщил об открытии гена трансмиссивной устойчивости к колистину. Таким образом, сбылись мрачные прогнозы многих исследователей и мир оказался на пороге появления бактериальных инфекций, для лечения которых даже формально не существует ни одного лекарственного препарата. Как подобное могло произойти, и какие это имеет последствия для нашего общества?

Фотография: Susanne Gerth / flickr.com
Фотография: Susanne Gerth / flickr.com

Колистин, относящийся к группе полимиксинов, является «антибиотиком запаса», то есть последним средством, применяющимся при инфекциях бактериями, которые устойчивы ко всем другим агентам. Как и многие другие антибиотики, колистин был открыт еще в 1950-е. Но уже начиная с 1970-х его практически не применяли в медицине; причина проста: это очень плохой антибиотик. Почти в половине случаев он проявляет нефротоксичность (дает осложнения на почки), к тому же к этому времени уже были открыты гораздо более эффективные и удобные карбапенемы и фторхинолоны. Колистин начал применяться для лечения больных только в последние десять лет, когда из-за распространения устойчивости к карбопенемам выбора у медиков почти не осталось. 

Тем не менее, в ветеринарии колистин никогда не прекращал использоваться и до последнего времени входил в пятерку антибиотиков, применяющихся на фермах в Европе и других странах. Ученые уже давно обращали на это внимание и призывали полностью запретить применение критического для лечения людей антибиотика в сельском хозяйстве. Особую тревогу вызывала популярность колистина в Юго-Восточной Азии, где реальные масштабы оборота невозможно было отследить, тем более что потребление антибиотиков фермерами никак не регулируется законодательно.

Как работает колистин? Это вещество связывается с липидами на поверхности бактерий, что приводит к разрушению мембраны и последующей гибели клетки. До сих пор все случаи возникновения устойчивости к колистину были связаны с хромосомными мутациями, которые обычно сопровождались снижением  жизнеспособности бактерий и, соответственно, не могли закрепиться и распространиться в популяции. 

Однако недавно, во время рутинного мониторинга лекарственной устойчивости бактерий, выделяемых из образцов сырого мяса, (исследование проводилось  в южном Китае с 2011 по 2014 год), ученые заметили подозрительно сильный рост количества устойчивых изолятов. Так, в 2014 году до 21 процентов исследованных образцов свинины содержали устойчивых к колистину бактерий. Когда биологи стали разбираться с этими штаммами, оказалось, что устойчивость определяется вовсе не хромосомными мутациями, а ранее неизвестным геном mcr-1

Сравнение последовательности гена с последовательностями в базе данных позволило предположить, что он кодирует фермент, модифицирующий липиды бактерий так, что они теряют способность связывать антибиотик. Ген находится на плазмиде – отдельной молекуле ДНК, которая может свободно перемещаться между разными штаммами и даже родственными видами бактерий, придавая им дополнительные свойства. Наличие плазмиды никак не влияет на самочувствие бактерий и она стабильна даже при отсутствии колистина в среде. 

Вывод авторов неутешителен: осталось совсем немного времени, до того момента как ген распространится по всему миру и у врачей может формально не остаться никаких опций для лечения некоторых инфекций. На самом деле, опций почти что нет уже и сейчас: высокая токсичность колистина делает его применение на практике затруднительным, то же касается и других антибиотиков «последнего резерва». При этом способность контролировать бактериальные инфекции с помощью антибиотиков является краеугольным камнемнашей медицины: без них невозможно себе представить ни химиотерапию рака, ни пересадку органов, ни сложные хирургические операции – все они заканчивались бы тяжелыми осложнениями.

Фотография: Jeremy Brooks / flickr.com
Фотография: Jeremy Brooks / flickr.com

Почему они не действуют

Несмотря на кажущееся разнообразие антибиотиков, большинство из них попадает в три основные группы в зависимости от мишени: ингибиторы синтеза клеточной стенки бактерий (бета-лактамы), антибиотики, ингибирующие синтез белка (тетрациклины, аминогликозиды, макролиды) и фторхинолоны, ингибирующие синтез ДНК бактерий. 

Первый антибиотик, спасший миллионы жизней во время Второй мировой войны – пенициллин – относится к группе бета-лактамов. Успех пенициллина был таким, что его не только продавали без рецепта, но и, например, добавляли в зубные пасты для профилактики кариеса. Эйфория ушла, когда в конце 1940-х годов многие клинические изоляты золотистого стафилококка перестали реагировать на пенициллин, что потребовало создания новых химических производных пенициллина, таких как ампициллин или амоксициллин. 

Основным источником резистентности стало распространение генов бета-лактамазы: фермента, расщепляющего ядро молекулы пенициллина. Эти гены не появились заново, ведь плесневые грибки, производящие пенициллин и бактерии сосуществовали друг с другом в природе миллионы лет. Впрочем, полностью синтетические фторхинолоны, появившиеся в клинической практике в начале 1980-х, уже через десять лет повторили судьбу пенициллина (сейчас уровни устойчивости к фторхинолонам в некоторых группах клинических изолятов доходят до 100 процентов за счет распространения хромосомных мутаций и переносимых факторов устойчивости, таких как транспортеры, откачивающие молекулы лекарств наружу). 

На протяжении последних 60 лет проходило соревнование химиков-синтетиков и бактерий: на рынок выходили новые и новые группы бета-лактамных антибиотиков (цефалоспорины нескольких поколений, монобактамы, карбапенемы), устойчивые к расщеплению, а бактерии обзаводились бета-лактамазами нового класса со все более широким спектром действия. В ответ на распространение генов бета-лактамаз были разработаны ингибиторы этих ферментов: бета-лактамы, которые «застревают» в активном центре фермента, инактивируя его. Комбинации антибиотиков-бета-лактамов и ингибиторов бета-лактамазы, такие как амоксиклав (амоксициллин-клавулонат) или пиперациллин-тазобактам сейчас являются одними из основных назначаемых средств в клинической практике. Эти комбинации даже сейчас являются зачастую более эффективными, чем бета-лактамы последнего поколения. Тем не менее, помимо эволюции бета-лактамаз, которая делает их нечувствительными для конкретного ингибитора, бактерии освоили и другой трюк: сам фермент биосинтеза клеточной стенки, с которым связывается бета-лактам, может стать недоступным для антибиотика. Именно такая форма устойчивости наблюдается у печально известного MRSA (метициллин-устойчивого золотистого стафилококка). Такие инфекции не являются неизлечимыми, но требуют применения более токсичных и менее эффективных препаратов.

Откуда берется устойчивость

MRSA относится к классу бактерий, вызывающих так называемые нозокомиальные, или «больничные» инфекции. Именно они вызывают такое беспокойство у врачей, уже сейчас унося десятки тысяч жизней каждый год в США и Европе и значительно повышая стоимость лечения. Больницы, особенно реанимационные отделения, представляют собой идеальное место для размножения и отбора супер-устойчивых бактерий. Человек, попадающий в реанимацию, обладает ослабленным иммунитетом и требует неотложного вмешательства, поэтому там применяются самые мощные препараты максимально широкого спектра действия. Применение таких лекарств вызывает отбор бактерий, устойчивых сразу ко многим классам антибиотиков.

Микробы обладают способностью выживать на самых различных поверхностях, включая халаты, столы, перчатки. Катетеры и аппараты ИВЛ являются стандартными «воротами» для больничных пневмоний, заражения крови, инфекций мочеполовой системы. Причем MRSA далеко не самый страшный больничный патоген: он относится к группе грам-положительных бактерий, а значит имеет толстую клеточную стенку, в которую хорошо проникают молекулы разных веществ. Например, ванкомицин. Настоящий ужас у врачей вызывают грам-отрицательные Escherichia coli, Pseudomonas aeruginosa и Acinetobacter baumannii: у этих бактерий клеточная стенка укрыта липидной мембраной, в которую вещества попадают через узкие каналы. Когда бактерия чувствует присутствие антибиотика, она снижает количество таких каналов, что сразу же понижает эффективность лечения; к этому надо добавить переносимые на плазмидах транспортеры, которые откачивают наружу чудом попавшие внутрь клетки молекулы лекарства, и гены бета-лактамаз (гены устойчивости обычно переносятся комплексами, что дополнительно усложняет борьбу с бактериями). Именно для борьбы с такими инфекциями колистин зачастую оставался последним доступным врачам средством.

Тем не менее, как показывает практика, внедрение адекватных процедур контроля внутри больниц (тщательная проверка назначений, сложные процедуры гигиены при всех контактах, деконтаминация всех поверхностей и так далее) позволяет ограничить или даже снизить уровень количество устойчивых бактерий. Это связано с тем, что для бактерии устойчивость к антибиотику имеет свою энергетическую цену. В отсутствие давления отбора устойчивые микроорганизмы не выдерживают конкуренции со своими более быстрорастущими родственниками. К сожалению, такие стандарты медицины доступны только в некоторых больницах в развитых странах.

Продолжение читайте во второй части.

Дмитрий Гиляров