Найти тему
Physics.Math.Code

Современная математика. Популярная серия [1965-1993]

Ссылки на скачивание в конце статьи *

Известная серия переводной математической литературы, выпускавшейся издательством «Мир» с 1960-г гг. Все 20 выпусков этой серии представлены в данной раздаче.

Беккенбах Э., Беллман Р. — Введение в неравенства — 1965

Книга содержит ряд задач и упражнений, к которым в конце книги даны ответы и указания (иногда — полные решения); число этих задач не очень велико, но достаточно для того, чтобы стимулировать активность читателя и предоставить ему возможность самоконтроля. Она может быть использована в работе школьных математических кружков; ее хочется рекомендовать всем интересующимся математикой учащимся старших классов, а также преподавателям средних школ и студентам педагогических институтов. В конце книги имеется составленный редактором список дополнительной литературы по теме книги.

Оре О. — Графы и их применение — 1965

Графы — сети линий, соединяющих заданные точки, — широко используются в разных разделах математики и в приложениях. Автором книги «Графы и их применение» является видный норвежский алгебраист Ойстин Оре. Для понимания книги вполне достаточны минимальные предварительные знания, практически не превышающие курса математики 7—8 классов средней школы. Как при изучении любой книги по математике, овладение новыми понятиями, конечно, потребует от читателя некоторых усилий и известной настойчивости. Однако это лишь доставит удовольствие истинному любителю математики.

Нивен А. — Числа рациональные и иррациональные — 1966

Эта книга посвящена одному из основных понятий математики — понятию действительного числа. Ученики старших классов (именно на них она в первую очередь и рассчитана) узнают из нее некоторые свойства чисел, о которых они раньше и не подозревали, и познакомятся с доказательствами теорем, принимаемых в школьном курсе алгебры на веру. Изложение очень простое и живое. Оно сопровождается рядом вопросов и задач, облегчающих активное усвоение материала. Автор книги — известный американский специалист по теории чисел.

Неванлинна Р. — Пространство, время и относительность — 1966

В этой книге рассказывается о математических и физических основах теории относительности. Значительная се часть посвящена геометрии. Здесь излагаются логические основы этого раздела математики, описывается неевклидова геометрия, геометрия четырехмерного пространства, затрагиваются и некоторые другие вопросы. Большое внимание уделено обсуждению точного понятия времени и связанных с ним парадоксов, а также понятию движения и пространственно-временной системы. В последней части книги описываются самые основные понятия механики, основанной на теории относительности Эйнштейна. Изложение подкупает своей простотой и четкостью. Эта книга, блестяще написанная крупным ученым, несомненно, доставит удовольствие всем любителям математики и физики.

Стинрод Н., Чинн У. — Первые понятия топологии — 1967

Иногда говорят, что топология — это качественная геометрия, но в наши дни едва ли следует считать топологию лишь частью геометрии. Она представляет собой одни из наиболее бурно и интенсивно развивающихся разделов математики и все шире проникает в самые разнообразные области математических знаний. Все больше приложений находят топология и вне математики. Эта книга посвящена основным и простейшим понятиям топологии. На примере двух важных теорем авторы показывают, как эти понятия возникают, как они позволяют правильно понять и точно сформулировать некоторые утверждения и как с помощью топологических методов эти утверждения можно доказать. Кинга написана ясным языком, содержит много полезных упражнений, от читателя не требуется предварительных знаний по топологии, Книга, безусловно, заинтересует всех любителей математики начиная о учащихся старших классов средней школы.

Линдон Р. — Заметки по логике — 1968

В наши дни широкого использования математических методов исследования во многих областях науки и искусства современная логика привлекает все большее внимание исследователей Одиако при этом на первый план зачастую выходит формальный аппарат логики, а не идейная ее сторона Именно этим идейным аспектам логики, пока незаслуженно остающимся па втором плане, посвящены в основном «Заметки по логике». Автор избрал внешне свободный стиль изложения и, не углубляясь в технические детали, очень ярко выявил основные идеи логики. Не приводя ни одного сложного и громоздкого доказательства, он тем не менее нигде не ограничился общими описаниями. Очень ценен для начинающего читателя набор задач, которые призваны привить вкус к самостоятельным исследованиям по логике. Книгу с большим интересом прочтут и те, кто только начинает заниматься математикой (на первом курсе вузов или в старших классах средней школы), и специалисты.

Мостеллер Ф., Рурке Р., Томас Дж. — Вероятность — 1969

Эта книга, написанная группой известных американских математиков и педагогов, представляет собой элементарное введение в теорию вероятностей и статистику — разделы математики, которые находят сейчас все большее и большее применение в науке и в практической деятельности. Написанная живым и ярким языком, она содержит множество увлекательных примеров, взятых большей частью из сферы повседневной жизни. Несмотря на то что для чтения книги достаточно владеть математикой в объеме восьмилетней школы, она является вполне корректным введением в теорию вероятности. Книга будет полезна всем интересующимся теорией вероятностей, студентам технических и естественно-научных вузов, техникумов, учителям средних школ и учащимся старших классов, а также всем любителям математики.

Шоке Г. — Геометрия — 1970

Книга видного французского математика и педагога содержит своеобразное изложение элементарной геометрии, основанное на разработанной автором системе аксиом, весьма далекой от классической. Близкая к наглядной очевидности аксиоматика Шоке отличается тем, что основные геометрические факты получаются в ней легко и естественно. 3а рубежом книга Шоке получила широкое признание как одна из наиболее продуманных попыток перестройки школьного курса геометрии. Книгу с интересом прочтут читатели разных категорий, начиная от учащихся старших классов школ с математической специализацией. Она будет, несомненно, полезна учителям математики и студентам педагогических институтов.

Хартсхорн Р. — Основы проективной геометрии — 1970

Эта небольшая по объему книга содержит свежее и достаточно современное изложение Начал проективной геометрии. На русском языке изданий такого рода нет, поэтому книга Р. Хартсхорна, бесспорно, заполнит ощутимый пробел в литературе по математике для начинающих. Она окажется неоценимой для всех, кто желает без больших затрат времени ознакомиться с основными идеями проективной геометрии.

Кац, Улам. Математика и логика. Ретроспектива и перспективы 1971

Книга видных американских ученых Марка Каца и Станислава Улама (оба автора хорошо известны советскому читателю по переводу ряда других их книг и старей) была подготовлена для выпускаемой издательством Британской энциклопедии серии обзоров, посвященных состоянию и ближайшим перспективам развития различных наук. Рассчитанная на широкий круг читателей, книга ставит своей целью освещение современного состояния математики, и ее специфических черт. Особое место уделяется взаимодействию и взаимозависимости математики и других наук, обогащающих, по мнению авторов, как чистую математику, так и все использующие математические методы направления научной мысли, а также обсуждению возможного будущего математики. Интересная по содержанию и блестящая по форме книга М. Каца и С. Улама бесспорно привлечет внимание читателей самых разных кругов.

Гроссман И., Магнус В. — Группы и их графы — 1971

В этой книге мы старались изложить теорию групп в форме, доступной для начинающих читателей. Чтобы обойти трудности, связанные с абстрактным характером понятий, мы прибегли к наглядным образам — графам групп. При этом абстрактная группа обрела конкретное представление, отражающее ее групповую структуру. Конечно, не приходится рассчитывать, что это обращение к наглядности позволит избежать серьезного изучения теории, без которого нельзя овладеть основными понятиями в любой области математики. Мы лишь попытались максимально использовать наглядность, чтобы лучше разъяснить смысл некоторых теорем и понятий. Мы сознаем, что нам далеко нс всегда удалось показать, как понятия теории групп связаны с практикой. В конечном счете нам пришлось положиться на внутреннюю привлекательность самой теории. И, разумеется, самое главное — это заинтересованность, которую должен проявить сам читатель.

Милнор Дж., Уоллес А. — Дифференциальная топология — 1972

Книга составлена из двух небольших и хорошо дополняющих одно другое сочинений известных американских ученых. Она может служить для первоначального ознакомления с новой математической дисциплиной, интерес к которой за последние годы очень возрос. Идеи дифференциальной топологии оказались чрезвычайно плодотворными в геометрии, в анализе, в теории дифференциальных уравнений, а также в различных приложениях математики. Авторы излагают начальные понятия этой дисциплины, иллюстрируя их большим количеством примеров. Книгу следует рекомендовать всем, начинающим изучать современную математику. Она доступна для студентов младших курсов университетов и педагогических институтов, но будет также интересна как специалистам, так и всем, кто желает получить представление о математике наших дней.

Эббинхауз, Якобс, Ман, Хермес — Машины Тьюринга и рекурсивные фукции — 1972

Этот коллективный труд немецких математиков содержит элементарное изложение теории машин Тьюринга и рекурсивных функций - важного раздела современной математической логики, нашедшего широкое применение в кибернетике. Помимо основ этой теории, книга содержит ряд существенных результатов, включая достижения последнего времени (в частности, результаты Колмогороа о связи машин Тьюринга с основаниями теории вероятностей). Изложение ведется строго, но доступно, содержит много примеров и пояснений. Книгу с интересом прочтут читатели разных категорий, начиная от учащихся старших классов школ с математической специализацией и кончая научными работниками и преподавателями высшей школы.

Бахман Ф., Шмидт Э. — n-угольники — 1973

В этой книге на вполне элементарном материале, начинающемся с простейших геометрических истин (середины сторон произвольного четырехугольника являются вершинами параллелограмма и т. д.), развита весьма изящная теория, устанавливающая зачастую совершенно неожиданные связи между геометрией и важными концепциями и понятиями современной алгебры. Большое достоинство книги — сопровождающие изложение задачи, которые позволяют читателю все время контролировать степень овладения материалом. Книга рассчитана на любителей математики самых разных категорий, начиная от старшеклассников, интересующихся этой наукой (например, учащихся школ с математической специализацией).

Окстоби Дж. — Мера и категория — 1974

В этой книге изучаются важные понятия теории меры и теории множеств. Наиболее подробно рассматриваются понятия множества первой категории и множества меры нуль. Излагаются многочисленные приложения этих понятий в различных областях анализа. Книга написана в хорошем стиле и при небольшом объеме затрагивает широкий круг вопросов. Она дает ценный материал для начальных семинаров по теории множеств и особенно полезна как учебное пособие при изучении основ теории множеств, теории меры и теории функций. Книга рассчитана на широкий круг читателей, начиная от учащихся математических школ и студентов младших курсов университетов и педагогических институтов.

Казанова Г. — Векторная алгебра — 1979

В небольшой по объему книге, вышедшей в популярной серии Издательства французских университетов, рассмотрены применения математического аппарата алгебр Клиффорда в геометрии и физике. Приложения охватывают описание вращений и отражений, уравнения Максвелла, специальную теорию относительности, расчет водородоподобных атомов и классификацию элементарных частиц. Центральное место занимает формулировка дираковой теории электрона и ее обобщений для нуклонов в терминах бикватернионных волновых функций частиц. Книга, рассчитанная в первую очередь на студентов-физиков, представляет интерес и для научных работников: физиков-теоретиков и математиков.

Боро В., Цагир Д., Рольфс Ю., Крафт Х., Янцен Е. — Живые числа. Пять экскурсий — 1985

Доступное и занимательное изложение некоторых разделов современной теории чисел: дружественные числа, первые 50 миллионов простых чисел, пифагоровы числа... Элементарные факты удачно сочетаются с результатами научных исследований. Авторы — математики из ФРГ. Для всех, кто интересуется теорией чисел, начиная со школьников старших классов.

Даан-Дальмедико А., Пейффер Ж. — Пути и лабиринты — 1986

Живые и занимательные рассказы о развитии математики с древнейших времен до начала XX века. Авторы, французские специалисты, уделяют главное внимание центральным идеям и понятиям, что помогает представить сложный ход развития математики. Для всех, кто интересуется математикой.

Коснёвски Ч. — Занимательная математика и персональный компьютер — 1987

Небольшая книга английского математика, знакомого советским читателям по переводу его «Начального курса алгебраической топологии» (М.г Мир, 1983). В ней в увлекательной форме предложена методика изучения различных разделов математики с помощью персональных компьютеров. Кратко излагаются теоретические сведения, формулируются занимательные задачи, для которых приводятся законченные программы на Бейсике с подробными пояснениями. Для всех, кто осваивает программирование на Бейсике и изучает математику с помощью ЭВМ.

Слойер К. — Математические фантазии. Приложения элементарной математики — 1993

Книга американского математика, знакомящая читателя с некоторыми приложениями математики в современном научном и техническом мире. Материал изложен в простой форме, доступной читателям, не имеющим специальной математической подготовки. Изложение сопровождается большим числом наглядных рисунков и конкретных числовых примеров. Для всех желающих ознакомиться с приложениями математики.

Скачать архив с книгами в нашей группе в VK

Скачать архив в нашей библиотеке в telegram

Спасибо, что дочитали статью до конца! Если вам нравится такие заметки, то оставьте комментарий, лайк или любую другую обратную связь :)

Наша библиотека в telegram (много книг для физиков, математиков и программистов) : https://t.me/physics_lib

Еще много полезного и интересного вы сможете найти на наших ресурсах:

Physics.Math.Code в контакте (VK)

Physics.Math.Code в telegram

Physics.Math.Code в YouTube

Репетитор IT mentor в VK

Репетитор IT mentor в Instagram

Репетитор IT mentor в Яндекс.Дзен