Загадки тёмной материи...
Все в этом мире состоит из атомов, которые состоят из нуклонов и электронов, а нуклоны делятся на кварки и глюоны. Свет тоже состоит из частиц: фотонов. Даже гравитационные волны, в теории, состоят из гравитонов: частиц, которые мы однажды, если повезет, найдем и зафиксируем. Но почему, темная материя? Косвенные доказательства ее существования невозможно отрицать. Но должна ли она также состоять из частиц?
Одна из самых интересных особенностей Вселенной заключается в соотношении один к одному между тем, что есть во Вселенной, и тем, как меняется скорость расширения с течением времени. И благодаря множеству тщательных измерений многих разрозненных источников – звезд, галактик, сверхновых, космического микроволнового фона и крупномасштабных структур Вселенной – мы смогли измерить и то и другое, определив, из чего состоит Вселенная. Разобрать её на составляющие представлений об этом в принципе, есть много из чего же состоит Вселенная, и все они по-разному влияют на космическое расширение.
Благодаря данным, мы знаем, что Вселенная сделана из следующего:
68% темной энергии, которая остается при постоянной плотности энергии даже при расширении пространства;
27% темной материи, которая проявляет гравитационную силу, размывается по мере увеличения объема и не дает измерить себя при помощи любой другой известной силы;
4,9% обычной материи, которая проявляет все силы, размывается по мере увеличения объема, сбивается в комки и состоит из частиц;
0,1% нейтрино, которые проявляют гравитационное и электрослабое взаимодействия, состоят из частиц и сбиваются вместе, только когда замедляются достаточно, чтобы вести себя подобно материи, а не излучению;
0,01% фотонов, которые проявляют гравитационные и электромагнитные воздействия, ведут себя как излучение и размываются как по мере увеличения объема, так и при растяжении длин волн.
Темная энергия, как следует из лучших источников, обладает одинаковыми свойствами в любой точке пространства, во всех направлениях космоса и во все эпизоды нашей космической истории. Другими словами, темная энергия одновременно гомогенна и изотропна: она везде и всегда одинакова. У неё не может быть одинаковой плотности повсюду в пространстве; скорее, она должна концентрироваться в регионах повышенной плотности и должна иметь меньшую плотность, либо вообще отсутствовать, в регионах пониженной плотности. Мы можем фактически сказать, сколько всего вещества находится в различных областях пространства, руководствуясь наблюдениями. Вот три наиболее важных из них:
Спектр мощности материи: Спектр мощности энергии говорит нам, что приблизительно 85% материи во Вселенной представлено темной материей, которая серьезно отличается от протонов, нейтронов и электронов, и эта темная материя родилась холодной, либо же ее кинетическая энергия сопоставима с массой покоя. Нанесите на карту материю во Вселенной, посмотрите, на каких масштабах она соответствует галактикам, – то есть с какой вероятностью вы найдете другую галактику на определенном расстоянии от той галактики, с которой вы начинаете, – и изучите результат. Если бы Вселенная состояла из однородного вещества, структура была бы смазанной. Если бы во Вселенной была темная материя, которая не собралась достаточно рано, структура в небольших масштабах была бы разрушена.
Гравитационное линзирование: Массивное тело, искривляющее своим гравитационным полем направление распространения проходящего мимо него излучения. Этот эффект тяготения называют «линзой» по той причине, что параллельный пучек излучения, пройдя мимо массивного тела, концентрируется позади него, подобно тому, как концентрируется световой луч, проходя сквозь стеклянную положительную линзу. В принципе, роль гравитационной линзы может играть любое тело, но на практике заметное искривление лучей способно вызвать лишь очень массивное тело, например, крупная планета или звезда, а также крупная система тел, такая как галактика или скопление галактик. Гравитационная линза одинаково влияет на все виды электромагнитного излучения и потоки релятивистских частиц. Допустим, квазар, галактику или скоплений галактик. Посмотрите, как фоновый свет искажается присутствием объекта. Поскольку мы понимаем законы тяготения, которые регулируются общей теорией относительности Эйнштейна, то, как искривляется свет, позволяет нам определить, сколько массы присутствует в каждом объекте. Посредством других методов мы можем определить количество массы, которое присутствует в обычном веществе: звезды, газ, пыль, черные дыры, плазма и пр. И снова мы находим, что 85% материи представлено темной материей. Более того, она распределена более диффузно, облачно, чем обычная материя. Это подтверждается слабым и сильным линзированием.
Космический микроволновый фон: В настоящее время считается общепринятым, как среди астрономов, так и среди физиков, что Вселенная возникла что-то около от 10 до 20 милиардов лет назад (последние уточненные оценки 13,7 ± 0,2 миллиарда лет - прим. переводчика) в гигантском взрыве, прозванном "Большой взрыв". Истинная природа этого изначального события еще вызывает много споров, и необходимо признаться, что мы знаем совсем немного, если вообще что-нибудь, о первом мгновении сотворения. Тем не менее, мы знаем, что Вселенная была невероятно горячей и гораздо более плотной, чем сегодня. Расширение и охлаждение после катаклизма Большого взрыва привело к возникновению всего содержимого Вселенной, которое мы сегодня наблюдаем. А именно: свет в виде "фотонов"; материя в виде "лептонов" (электроны, позитроны, мюоны) и "барионы" (протоны, антипротоны, нейтроны, антинейтроны); более таинственные частицы, такие как "нейтрино" и, может быть, некоторые экзотические частицы "темной материи"; и последующее образование первых химических элементов Вселенной. Если вы посмотрите на оставшееся свечение излучения Большого Взрыва, вы обнаружите, что оно примерно равномерное: 2,725 Kво всех направлениях. Но если взглянуть пристальнее, можно обнаружить, что в масштабах от десятков до сотен микрокельвинов наблюдаются крошечные дефекты. Они рассказывают нам несколько важных вещей, включая энергетические плотности обычной материи, темной материи и темной энергии, но самое главное – они говорят нам, насколько однородной была Вселенная, когда ей было всего 0,003% от ее нынешнего возраста. Ответ таков, что самый плотный регион был всего на 0,01% плотнее наименее плотного региона. Другими словами, темная материя начала с однородного состояния и по мере течения времени сбилась в комки. Темная материя сродни обычному веществу в том смысле, что она способна собираться в сгустки (размером, скажем, с галактику или скопление галактик) и участвует в гравитационных взаимодействиях так же, как обычное вещество. Скорее всего, она состоит из новых, не открытых еще в земных условиях частиц.
Объединяя все это, мы приходим к выводу, что темная материя должна вести себя как жидкость, наполняющая Вселенную. Эта жидкость обладает пренебрежимо малым давлением и вязкостью, реагирует на давление излучения, не сталкивается с фотонами или обычным веществом, была рождена холодной и нерелятивистской и сбивается в кучу под действием собственной гравитации с течением времени. Она определяет формирование структур во Вселенной на самых больших масштабах. Она высоко неоднородна, и величина ее неоднородности растет со временем.
Что мы можем сказать о ней в больших масштабах, поскольку они связаны с наблюдениями. На малых масштабах мы можем лишь предполагать, не будучи уверенными сполна, что темная материя состоит из частиц со свойствами, которые заставляют ее вести себя таким образом на больших масштабах. Причина, по которой мы это предполагаем, состоит в том, что Вселенная, насколько нам известно, состоит из частиц в основе своей. Если ты вещество, если у тебя есть масса, квантовый аналог, то ты неизбежно должен состоять из частиц на определенном уровне. Имеются и другие подходы к поиску частиц темной материи, например, поиск продуктов их аннигиляции в центральной области нашей Галактики. Какой из всех этих путей первым приведет к успеху, покажет время, но в любом случае открытие этих новых частиц и изучение их свойств станет важнейшим научным достижением.
Вот почему так важно предпринимать попытки прямого обнаружения темной материи. Подтвердить или опровергнуть фундаментальную составляющую темной материи в теории невозможно, только на практике, подкрепив наблюдениями. По всей видимости, темная материя никак не связана с темной энергией. Состоит ли она из частиц? Пока мы не найдем их, мы можем только догадываться.