Найти в Дзене

Виды моделей грунтовых оснований. Классификация

Оглавление

Модель грунтового основания - это математическое описание основных характерных типов поведения элементарного объема реального грунта, предназначенная для создания в расчетной схеме инженерно-геологических элементов.

(Вместо самого грунта рассматривают его расчётную механическую модель, которая должна отражать основные механические свойства грунта, но быть свободна от второстепенных деталей, не играющих существенной роли для поставленной цели)

Расчётную механическую модель грунта используют для схематизации зависимости между нагрузками на грунтовый массив и осадками, и определения напряжений и деформаций грунта путём расчёта.

Модели грунтового основания классифицируют по:

1) По признаку учёта распределительных свойств основания

2) По признаку учёта необратимых деформаций

3) По виду зависисимости между напряжениями (давлениями) и деформациями (осадками)

4) По признаку учёта временного фактора (зависимости деформаций грунтового основания от времени)

5) По уровню рассмотрения (подходу для построения определяющих уравнений)

Рассматривающие работу грунтов на микроуровне (микроструктурные модели), макроуровне (континуальные модели на уровне макрообразцов) и модели, использующие характерные для макроподхода зависимости на микроуровне

Подробнее:

1) По признаку учёта распределительных свойств основания

а) Модель общих  деформаций б) Модель местных деформаций
а) Модель общих деформаций б) Модель местных деформаций

а) Модель общих деформаций

Модель общих деформаций предполагает, что осадки основания происходят не только на загруженной поверхности, но и за ее границами.

Пример: модель линейно деформируемого полупространства.

б) Модель местных деформаций

Модель местных деформаций предполагает, что осадки основания происходят только в пределах загруженной поверхности.

Примеры: модель Винклера, модель Фусса.

2) По признаку учета необратимых (остаточных) деформаций

-2

а) Упругие модели

Эти модели не учитывают необратимые (остаточные) деформации.

Для упругих моделей характерно совпадение графиков нагрузки и разгрузки, построенных в координатах «осадка – давление».

Примеры: модель линейно деформируемого полупространства и модель Винклера.

б) Неупругие модели

Эти модели учитывают необратимые (остаточные) деформации.

В неупругих моделях графики нагрузки и разгрузки основания расходятся. При этом после полной разгрузки основания сохраняются необратимые (пластические) осадки (деформации).

Примеры: модель Фусса, модель С.Н. Клепикова

3) По виду зависимости между напряжениями (давлениями) и деформациями (осадками)

-3

а) Линейные модели

(с линейной зависимостью между напряжениями и деформациями)

Примеры: модель линейно деформируемого полупространства, модель Винклера.

Физическое представление модели Винклера
Физическое представление модели Винклера

б) Нелинейные модели

(с нелинейной зависимостью между напряжениями и деформациями)

Иногда используют модели, имеющие смешанные свойства:

Представление модели упругопластической среды - эта модель представляет собой синтез модели линейно деформируемого полупространства и модели среды теории предельного равновесия, что предполагает наличие в грунтовой среде как области среды линейно деформируемого полупространства, так и области среды теории предельного равновесия.
Представление модели упругопластической среды - эта модель представляет собой синтез модели линейно деформируемого полупространства и модели среды теории предельного равновесия, что предполагает наличие в грунтовой среде как области среды линейно деформируемого полупространства, так и области среды теории предельного равновесия.

4) По признаку учёта временного фактора (зависимости деформаций грунтового основания от времени)

1) Стационарные модели грунта

2) Нестационарные модели грунта.

Нестационарными моделями грунта называют такие модели, для которых зависимости между напряжениями и деформациями являются функциями времени.

Основной задачей нестационарных моделей является прогноз деформаций грунтов основания на расчетный момент эксплуатации сооружения.

Часто используют теории расчета конечных напряжений и стабилизированных (конечных) осадок основания, но в некоторых практических случаях возникает необходимость в инженерном прогнозе осадок основания на расчетный момент времени (расчёт развития осадок во времени). (Например при проектировании оснований гидротехнических сооружений, оснований фундаментов, испытывающих большие горизонтальные нагрузки, сооружений, возводимых на слабых водонасыщенных грунтах и т.п.)

(Модели, учитывающие временные эффекты получают, как правило, из статических моделей с добавлением параметра вязкости).

Различают два вида нестационарных моделей:

а) Фильтрационные модели (Фильтрационная консолидация грунта)

С помощью фильтрационных моделей исследуются процессы фильтрационной консолидации, связанные с перераспределением давлений между скелетом грунта и поровой водой при ее отжатии из пор под действием нагрузки. Фильтрационную консолидацию грунта называют также первичной консолидацией. Первичная консолидация протекает в водонасыщенных грунтах при степени их влажности больше 0,8. При меньшей влажности процессами фильтрационной консолидации обычно пренебрегают.

б) Реологические модели

Реологические процессы протекают в скелете грунта при степени его влажности меньше 0,8 и напряжениях, больших структурной прочности. Реологические процессы в грунте называют также его вторичной консолидацией.

5) По уровню рассмотрения (подходу для построения определяющих уравнений)

а) Микроподход (на микроуровне) (микроструктурные модели)

Для зернистых сред (например, песков и других сыпучих материалов) микроподход строится на применении каких либо соотношений для сил, действующих на контакте между отдельными частицами, и получения далее из рассмотрения случайных или регулярных упаковок связей между осредненными значениями напряжений и деформаций на макроуровне.

В случае связных грунтов микроподход обычно связан с использованием кинетической теории, и получающиеся уравнения состояния автоматически включают функции от времени.

б) Макроподход (на макроуровне) (континуальные модели на уровне макрообразцов)

Макроподход реализуется в рамках теории сплошной среды и основывается на феноменологических зависимостях, получаемых при экспериментальных исследованиях представительных объемов (образцов) грунта.

(континуальные (сплошные) модели, обычные для механики сплошной среды).

в) Модели, использующие характерные для макроподхода зависимости на микроуровне

Более подробно о конкретных моделях оснований: