(Разные разности. «ХиЖ» 2023 №10)
Целое всегда есть нечто большее, чем простая сумма его частей. Этот основополагающий принцип холизма получил еще одну блестящую иллюстрацию. (Впрочем, этот принцип никто не подвергает сомнению.) Герой иллюстрации — нитрид бора.
Существуют разные по структуре формы нитрида бора, у которых, разумеется, разные свойства — как и у аллотропных модификаций углерода. Есть мягкий графит, идеальный для карандашей, а есть твердый алмаз — рабочая лошадка в индустрии режущего инструмента.
Точно так же и у нитрида бора. Есть двумерный (2D) гексагональный нитрид бора (h-BN) — настолько мягкий, что получил название «белого графита». Это дешевое и стабильное вещество, еще и очень легкое. Его широко используют в смазках, в покрытиях и в косметике.
А есть трехмерная (3D) кубическая форма нитрида бора (c-BN) — очень твердое вещество, по твердости наступающее алмазу на пятки. Что и неудивительно — кристаллическая структура у него такая же, как и у алмаза. Твердый, термически стабильный и химически инертный — просто идеальный материал для работы.
Обычно его используют для шлифовки подшипниковой и инструментальной стали, чугуна, суперсплавов, в некоторых керамических материалах. Здесь он вне конкуренции и легко обходит алмаз по теплостойкости: у алмаза она составляет приблизительно 800°С, а у кубического нитрида бора — до 1400°С.
У исследователей из Университета Райса появилась идея смешать две эти формы нитрида бора, мягкий и твердый, сделать из смеси нанокомпозит и посмотреть, что получится. Получилось интересно и неожиданно. Оказалось, что тепловые и оптические свойства смешанного материала сильно отличаются от среднего значения двух разновидностей нитрида бора. Композит из этих двух, казалось бы, противоположных материалов превзошел их по разным функциональным возможностям.
У композита оказалась низкая теплопроводность. Значит, он может служить теплоизоляционным материалом в электронных устройствах. Композит также более активно взаимодействует с фотонами. Это, видимо, связано с более упорядоченной структурой полученного материала. Оказалось, что группы атомов бора и азота в композите образуют более крупные зерна, когерентно расположенные в решетке.
А когда композит подвергли быстрому спеканию в искровой плазме, материал превратился в гексагональный нитрид бора. Причем он был более высокого качества, чем тот, который изначально использовали для приготовления нанокомпозита. Ученые полагают, что первую скрипку в этом процесс полного фазового превращения нанокомпозита в 2D h-BN играет кубический нитрид бора. Именно он управляет кинетикой зарождения и роста идеальных, улучшенных кристаллов (Nano Letters).
Л.Н. Стрельникова
Остальные статьи из этой рубрики вы можете найти в подборке «Разные разности».
Купить номер или оформить подписку на «Химию и жизнь»: https://hij.ru/hij_kiosk.shtml
Благодарим за ваши «лайки», комментарии и подписку на наш канал.
– Редакция «Химии и жизни»