На пальчиковые батарейки или аккумуляторы мобильных телефонов созданный в Национальном исследовательском ядерном университете (НИЯУ) «МИФИ» прототип источника электроэнергии на плутонии‑238 походит мало. Это состоящее из нескольких технологических слоев 30‑килограммовое устройство с многочисленными разъемами в карман не запихнешь.
Короче жизнь — выше мощность
Автономный блок питания НИЯУ «МИФИ» предназначен для расположенных в отдаленных районах потребителей, например автоматических метеостанций или датчиков телеметрии для нефте- и газопроводов, и может работать без подзарядки несколько десятков лет. Конечно, это не вечность, но все равно очень долго. Чем больше период полураспада активного изотопа, тем дольше проработает батарейка на его основе. Скажем, если в сердцевине находится торий‑228 — пару лет, если америций‑241 — полновесные четыре века. В НИЯУ «МИФИ» предполагают использовать плутоний‑238 с 87‑летним периодом полураспада.
«Мы, разработчики, предпочитаем говорить о гарантированном сроке службы устройства — два-три десятка лет. На больших временных промежутках, скорее всего, станут терять рабочие свойства другие компоненты: начнут разрушаться провода, проявится деградация фотоэлементов, возможна и потеря вакуума в капсуле, — рассказывает руководитель коллектива разработчиков, заведующий кафедрой физико-технических проблем метрологии Института лазерных и плазменных технологий («ЛаПлаз») НИЯУ «МИФИ» Петр Борисюк. — В принципе, ядерное «сердце» изделия, изотопный источник, можно переместить в новую оболочку, и оно продолжит выдавать ток. При этом стоит напомнить: чем меньше живет активный изотоп, тем выше (при одинаковой энергии распада) его мощность».
Наследница советских РИТЭГов
Применяемый в плутониевой батарейке принцип преобразования энергии ядерного распада в электрическую называется термофотовольтаическим. Альфа-источник окружен вакуумной капсулой, внешние стенки которой покрыты слоем наночастиц. Тепло от ионизирующего излучения нагревает капсулу примерно до 1,5 тыс. К, заставляя ее поверхность светиться. Это улавливают окружающие капсулу фотоэлементы, способные выдерживать колоссальную жару. И на выходе уже сейчас, на стадии прототипа, обеспечивается мощность, способная заставить светиться электрическую лампочку на несколько свечей.
Казалось бы, зачем так сложно? Ведь тепло, неизменный спутник процесса радиоактивного распада, способно давать ток напрямую. Примерно так рассуждали ученые прошлых поколений в Советском Союзе, когда конструировали и запускали в серийное производство радиоизотопный термоэлектрический генератор (РИТЭГ). Он работал на бета-частицах стронция‑90 по другому принципу — термоэлектрическому. Иначе говоря, как термопара: между холодным и разогретым от активного источника контактами возникало напряжение, током от которого и запитывали приборы. Для эвакуации последних РИТЭГов с автономных антарктических метеопостов в 2015 году, кстати, пришлось снаряжать полярную миссию. С тех пор российские автоматические метеостанции в труднодоступных районах электричество получают от ветряков.
Но у РИТЭГов коэффициент полезного действия не превышал 6 %. В батарейке НИЯУ «МИФИ» уже сейчас в 2,5 раза больше. Секрет в специальных термофотоэлементах, которые эффективно преобразуют свет ближнего диапазона инфракрасного спектра в электричество. В итоге энергии теряется меньше. Правда, батарейка остается объектом лабораторных исследований. Оттого и многочисленные разъемы на окружающих корпус фланцах. И радиоактивного изотопа внутри пока нет: разогрев рабочей капсулы имитирует обычная нить накаливания. Остальные параметры соответствуют проектным значениям, в том числе и напряжение на выходных клеммах.
Полный материал читайте в отраслевой газете «Страна Росатом».