В реальных системах машинного обучения важно вести непрерывное наблюдение за данными и моделями. Даже сама ML-модель осталась прежней, характер данных мог измениться, что может непосредственно повлиять на пользователей. Сегодня на рынке существует множество платформ, предназначенных для мониторинга ПО, куда собираются различные системные и бизнес-метрики, чтобы отражать наиболее важные данные на наглядных дэшбордах и генерировать уведомления. Например, Grafana, Datadog, Graphite и пр.
Также есть средства для мониторинга ML-систем машинного обучения типа Neptune, Amazon SageMaker Model Monitor, Censius и прочие MLOps-средства. Но можно объединить наблюдение за работой системы машинного обучения с классическим инженерным мониторингом ПО на одной платформе. Это достижимо с помощью New Relic, телеметрической платформы удаленного мониторинга мобильных и веб-приложений, которая позволяет собирать, исследовать и получать оповещения обо всех данных телеметрии из любого источника в одном месте. Благодаря интеграции со многими open-source инструментами New Relic может работать с различными источниками и приемниками данных.
Отправка данных из ML-систем в New Relic реализуется с помощью Python-библиотеки ml-performance-monitoring с открытым исходным кодом, которая доступна на GitHub (https://github.com/newrelic-experimental/ml-performance-monitoring).
Установка: ml_performance_monitoring
https://towardsdatascience.com/monitor-easy-mlops-model-monitoring-with-new-relic-ef2a9b611bd1
#machinelearning #artificialintelligence #ai #datascience #python #programming #technology #deeplearning #coding #bigdata