Найти тему
⚡️ Цены на профессиональную линейку Nvidia RTX Pro Blackwell. Американский ритейлер Connections опубликовал цены на серию RTX Pro Blackwell от Nvidia. Флагманская модель RTX Pro 6000 стоит 8565 долларов, это на 26% дороже предыдущего поколения RTX 6000 Ada. В прайсе также перечислены еще невыпущенные модели RTX Pro 4000/4500/5000: 🟢RTX Pro 5000 — 4569 долларов; 🟢RTX Pro 4500 — 2623 доллара; 🟢RTX Pro 4000 — 1546 долларов. Цены, традиционно для американского ритейла, указаны до налогов, которые в каждом штате разные. #news #ai #ml
4 дня назад
⚡️ JARVIS-VLA – модель обучения масштабных моделей «визуально-языкового взаимодействия» (Vision Language Models) для игры с использованием клавиатуры и мыши. Проект заточен под игру в Minecraft, где модель способна выполнять более 1 000 различных атомарных задач таких как крафтинг, плавка, готовка, добыча ресурсов и даже сражения. ▪ Инновационный подход к обучению Модель превозносит на 40% по сравнению с лучшими агентами-базами на разнообразном наборе атомарных задач. ▪ Достижение новых стандартов в Minecraft Подход JARVIS-VLA превосходит традиционные методы имитационного обучения, демонстрируя передовые результаты и устанавливая новые стандарты производительности в управлении агентами в игровом мире Minecraft. ▪ Применение в реальных случаях Использование данной модели в Minecraft открывает широкие возможности для автоматизации и оптимизации игровых процессов, что может быть интересно не только геймерам, но и исследователям в области ИИ, стремящимся расширить границы взаимодействия человека с компьютерными агентами. ▪ HF ▪Статья
5 дней назад
🤖 Modern Robotics Course: Открытый курс по современной робототехнике. Курс сочетает теорию (математика, физика) и практику (код, симуляторы), помогая разработчикам научиться создавать и программировать роботов. 🌟 Что внутри? ▪ Лекции: От основ робототехники, математики и физики до пространственных преобразований, обратной кинематике и более продвинутым концепциям . ▪ Практика: Примеры кода на Python и C++ для управления роботами. ▪Симуляторы: Интеграция с стимуляторами Gazebo и ROS ( операционная система для робото) для тестирования алгоритмов. ▪Задания: Реальные практические задачи (например, управление манипулятором робота). 🌟 Для кого? ▪ Начинающие робототехники: Освоить кинематику, динамику, управление. ▪ Программисты: Интегрировать алгоритмы в ROS, Gazebo, Python/C++. ▪ Инженеры: Возможность Научиться разрабатывать автономные системы и манипуляторы. ▪Технологические энтузиасты С курсом можно пройти путь от нуля до создания рабочего прототипа. С курсом у вас будет возможность проектировать роботов, не имея железа под рукой (через симуляторы). ✔️ Готовые решения: Внутри вы найдете библиотеки для работы с преобразованиями, датчиками, движением. ✔️Карьера в робототехнике: Курс даст возможность получить базовые навыки, востребованные в Bosch, Boston Dynamics, Tesla. ⭐️ Преимущества перед другими открытыми курсами 🟠 Акцент на практике: Минимум абстракций — максимум кода. 🟠Совместимость с ROS: Стандарт для промышленной робототехники. 🟠 Современные алгоритмы: Не только классика, но и нейросетевые подходы. ➡️ Cовет: Для погружения в курс, вам поможет книга Robotics, Vision and Control: Fundamental Algorithms in Python, Peter Corke, вот ее репозиторий с примерами кода. P.S. Для тех, кто любит формат «сделай сам»: Курс научит вас собирать робота виртуально, а потом переносить решения на реальные устройства. 🤖💡 ✔️ Github ✔️ Введение в курс #course #ai #ml #robots #education #курс #робототехника
5 дней назад
⚡️ Claude получила возможность веб-поиска. Anthropic объявила о запуске новой функции веб-поиска для Claude. Теперь ИИ способен анализировать актуальные данные из интернета, предоставляя ответы с прямыми ссылками на источники. Это позволяет не только повысить достоверность информации, но и упростить проверку фактов. Поиск доступен в режиме Preview для платных подписчиков в США, но в ближайшие месяцы ожидается глобальное расширение. Для активации ye;yj включить опцию в настройках профиля и начать диалог с Claude 3.7 Sonnet — система сама определит, когда требуется обращение к веб-источникам anthropic.com ✔️ Hugging Face запустил приложение HuggingSnap: оффлайн-ИИ для анализа окружения через камеру iPhone. Hugging Face представила приложение HuggingSnap для iOS, использующее локальную Smolvlm2 для анализа изображений в реальном времени без подключения к сервису. В отличие от облачных аналогов, HuggingSnap обрабатывает данные исключительно на устройстве, экономя заряд устройства и гарантируя конфиденциальность. Пользователи могут получать описания объектов, сцен, текстов и сложных визуальных контекстов. Для работы требуется iOS 18, но приложение также совместимо с macOS и Apple Vision Pro. По словам разработчиков, HuggingSnap-это пример, как локальный ИИ может стать повседневным инструментом. techcrunch.com ✔️ Google добавит Gemini AI в Chrome, повторяя опыт Copilot для Windows 11 Google активно тестирует интеграцию ИИ-ассистента Gemini в браузер Chrome, стремясь вывести его за рамки веб-сайта. Как выяснили исследователи, функционал разместят в верхней части окна — рядом с кнопками управления. В настройках появится возможность назначить горячие клавиши или активировать ассистент через меню. При запуске Gemini будет открываться в отдельном плавающем окне. Кроме того, Google планирует вынести иконку ассистента в системный трей — запускать его можно будет прямо с панели задач, хотя для работы потребуется активный Chrome. Пока функция доступна лишь в экспериментальных сборках, а ее стабильность оставляет желать лучшего. Ясно одно - Google намерен конкурировать с Microsoft, предлагая свой подход к интеграции ИИ в повседневные инструменты. windowslatest ✔️ AudioX: универсальная модель генерации звука и музыки через кросс-модальные преобразования. Moonshot AI совместно с Гонконгским университетом анонсировали AudioX — универсальную модель на базе Diffusion Transformer, способную генерировать высококачественное аудио и музыку из текста, видео, изображений или их комбинаций. Главная инновация — стратегия маскирования входных данных, которая усиливает обучение кросс-модальных представлений. Возможности AudioX: генерация любых звуков на основе текста, видео и их комбинаций (текстовый промпт к видео), восстановление "потерянной" части аудио, генерация музыки на основе текста, видео и их комбинации и "аутпейнт" существующего аудио. Тесты AudioX: лучшая в 15+ задачах, включая генерацию звука по видео (VGGSound) и создание музыки по тексту (MusicCaps). На FAD и KL-дивергенции модель показала улучшение на 12–35% против Tango 2 и AudioLDM. Веса и код - coming soon. zeyuet.github ✔️ Microsoft Research разработал Claimify: инструмент фактчекинга ИИ Microsoft Research представил Claimify — систему, которая решает проблему недостоверных ответов ИИ, извлекая из текстов только верифицируемые утверждения. Метод основан принципах: исключение субъективных суждений, сохранение критического контекста, устранение двусмысленностей, самостоятельность утверждений и др. Результаты тестов показывают, что 99% утверждений, извлечённых Claimify, полностью соответствуют исходному контексту. microsoft ✔️ RF-DETR: новая SOTA для обнаружения объектов в реальном времени с открытым исходным кодом. Это первая модель, работающая а реальном времени: 60+ mAP на COCO. SOTA на бенчмарке RF100-VLRF-DETR. Github ✔️ Same New - нейросеть копирует любой сайт с точностью до пикселя — по одной ссылке воспроизводит весь интерфейс, структуру, анимации, изображения и даже интерактивные элементы. @ai_machinelearning_big_data #news #ai #ml
6 дней назад
✔️ Nvidia выпускает 2 персональных суперкомпьютера. На GTC 2025 NVIDIA представила новую серию «персональных суперкомпьютеров с ИИ», построенных на платформе Grace Blackwell - DGX Spark и DGX Station. На них пользователи смогут создавать прототипы, настраивать и запускать модели ИИ. DGX Spark использует GB10 Grace Blackwell с вычислительной мощностью до 100 трлн. операций в секунду. DGX Station получила чип GB300 Grace Blackwell и 784 ГБ памяти. Spark уже доступен к предзаказу, а Station, как ожидается, будет выпущена в течение этого года. nvidianews.nvidia.com ✔️ OpenAI выпустили o1-pro и сейчас это самая дорогая модель. Цена $150 за миллион токенов на вход и $600 на выход. Что примерно в 270 раз дороже DeepSeek-R1. ✔️ В Gemini добавили новые инструменты. В приложении Google Gemini появилась новая функция «Холст», которая предоставляет интерактивное пространство для редактирования текста в реальном времени, позволяя создавать черновики и экспортировать их в Google Docs. Он также может генерировать и просматривать код HTML/React для упрощения дизайна веб-сайта. Помимо "Холста" была запущена функция "текст-в-аудио", которая может обобщать загруженный текст из файлов в аудиоформате и имитировать обсуждение двух ИИ-ведущих так же, как это реализовано в NotebookLM. В настоящее время поддерживается только английский язык, но обещают, что в будущем появится мультиязычность. 9to5google.com ✔️ RTX PRO 6000 от NVIDIA NVIDIA анонсировала выпуск профессиональной серии видеокарт для ИИ, 3D и научных исследований. В линейке RTX PRO 6000 будет 3 версии: Workstation Edition в дизайне RTX 5090, Server Edition с пассивным радиатором охлаждения для ЦОДов и Max-Q Edition с системой воздушного охлаждения турбинного типа для мульти-GPU решений. Все три версии получат 96 ГБ G7 ECC VRAM, чипы GB202 и 24064 CUDA-ядер. Энергопотребление у Workstation Edition и Server Edition - 600 Вт, а у Max-Q Edition - 300 Вт. Дата начала продаж: апрель-май 2025 года, стоимость в анонсе не раскрывалась. theverge.com ✔️ xAI приобрела стартап Hotshot для развития генерации видео из текста. Компания Илона Маска совершила первую крупную сделку, поглотив стартап Hotshot, известный разработкой text-to-video моделей. Как заявил Маск в соцсети X, вскоре пользователей ждут «крутые ИИ-видео» — вероятно, благодаря интеграции технологий Hotshot в экосистему xAI. Hotshot был основан в 2017 году и изначально создавал инструменты для редактирования фото на базе ИИ, но позже переключился на генерацию видео. За 2 года команда разработала 3 фундаментальные модели: Hotshot-XL, Hotshot Act One и Hotshot, которые позволяют превращать текстовые описания в реалистичные ролики. Финансовые условия сделки не раскрыты, однако известно, что стартап получит доступ к кластеру Colossus — мощной инфраструктуре xAI с 200 000 GPU NVIDIA H100. analyticsindiamag.com ✔️ Deloitte запускает Zora AI: автономные агенты для бизнеса. Deloitte представила Zora AI — ИИ-платформу, которая объединяет агентов для автоматизации сложных бизнес-процессов. Решение, построенное на моделях Llama Nemotron с функциями анализа и рассуждений, способно автономно выполнять задачи в финансах, HR, логистике и других сферах. Платформа автоматизирует моделирование сценариев, анализ рынка и управление расходами, что подтверждает внутренний опыт Deloitte: автоматизация процессов снизила затраты на 25%, а продуктивность команды выросла на 40%. deloitte.com ✔️Orpheus 3B - новый высококачественный, генератор эмоциональной речи - лицензия Apache 2.0! 🔥 Обучена на 100 тыс. часов аудио. На выходе получается естественная и эмоциональная речь. HF @ai_machinelearning_big_data #news #ai #ml
1 неделю назад
🌟 YOLOE — это усовершенствованная версия алгоритма обнаружения объектов, вдохновлённая классической архитектурой YOLO и разработанная командой THU-MIG. Архитектура YOLO (You Only Look Once) получила своё название благодаря подходу, при котором нейронная сеть анализирует всё изображение целиком за один проход, чтобы определить присутствие и расположение объектов. Это отличается от других методов, которые сначала выделяют потенциальные области с объектами, а затем отдельно классифицируют их, что требует нескольких обработок одного изображения YOLOE сохраняет принцип однократного взгляда на изображение для детекции объектов, но вносит архитектурные улучшения, направленные на повышение точности и эффективности модели. ▪ Ключевые отличия от классического YOLO: - Оптимизированная архитектура: В YOLOE внедрены новые подходы для более эффективной обработки признаков, что позволяет улучшить качество детекции без значительного увеличения вычислительных затрат. - Повышенная точность: Улучшенные модули и методы, такие как ре-параметризация отдельных блоков, способствуют более точному обнаружению объектов, включая мелкие и сложно различимые элементы. - Скорость и эффективность: YOLOE сохраняет высокую скорость инференса, делая его пригодным для задач в реальном времени, при этом обеспечивая конкурентоспособное соотношение производительности и точности. ▶️YOLOE требует в 3 раза меньших затрат на обучение по сравнению с YOLO-Worldv2, что делает процесс обучения более экономичным YOLOE представляет собой современное и улучшенное решение для задач детекции объектов, совмещающее лучшие стороны классического YOLO с новыми архитектурными подходами. 🖥Github 🟡Статья 🟡HF 🟡Colab #yoloe #opensource #ml #ai #yolo #objectdetection
1 неделю назад
🔥 Китайцы снова жгут: Baidu выпустили ERNIE 4.5 и ERNIE X1, мощные модели по невероятно низкой цене! Вот все, что вам нужно знать. ⚡️ERNIE 4.5 - Мулльтимодальная модель, превосходит GPT 4.5 в нескольких бенчмарках всего за 1% от цены GPT 4.5 - OpenAI GPT 4.5 - Input: $75 / 1M токенов, Output: $150 / 1M токенов; - ERNIE 4.5 - Input: $0.55 / 1M токенов, Output: $2,20 / 1M токенов ⚡️ERNIE X1 - Ризонинг модель с мультимодальными возможностями, спроизводительностью на уровне с DeepSeek R1, но в два раза дешевле. Чатбот с искусственным интеллектом ERNIE Bot доступен бесплатно для всех пользователей. Обе модели доступны в свободном доступе ERNIE Bot на его официальном сайте: https://yiyan.baidu.com. #ernie #ai #llm #Baidu
1 неделю назад
📌Awesome CursorRules: репозиторий с рецептами Cursor AI. Awesome CursorRules — коллекция файлов-рецептов .cursorrules для тонкой настройки поведения Cursor AI. Автор репозитория собрал десятки шаблонов, адаптирующих генерацию кода под конкретные проекты: от мобильных приложений до блокчейн-решений. Главная «фишка» .cursorrules — гибкость. Разработчики могут прописать правила, которые сделают подсказки ИИ более релевантными: например, учесть стиль кода команды или архитектурные особенности проекта. Это не только ускоряет работу, но и снижает риск ошибок. Коллекция включает практически все сферы разработки: фронтенд (Angular, NextJS, Qwik, React, Solid, Svelte, Vue), бэкенд (Deno, Elixir, ES, Go, Java, Lavarel, NodeJS, Python, TypeScript, WordPress), мобильную разработку (React Native, SwiftUI, TypeScript, Android, Flutter) и специфические задачи — интеграцию с Kubernetes или оптимизацию под SOLID-принципы. Для новичков есть пошаговые инструкции: достаточно скопировать файл в проект или установить расширение для VS Code. Судя по отзывам, Awesome CursorRules уже стал мастхэв для тех, кто хочет выжать максимум из Cursor AI. 🖥GitHub @machinelearning #AI #ML #Github #Awesome #CursorAI
2 недели назад
✔️ OpenAI презентовала новые инструменты для разработчиков. OpenAI анонсировала 3 новых инструмента для разработчиков, поддерживаемых в API и доступных через новый SDK. Среди новинок – WebSearch Tool, основанный на дообученной модели GPT-4o/GPT-4o-mini, для поиска информации в интернете. FileSearch Tool - инструмент поиска по документам с возможностью фильтрации по тегам, аналогично функциональности в Ассистентах. Третий - Computer Use (Operator), использующий ту же GPT-4o, предоставляющий доступ к локальному компьютеру пользователя. Опубликованы и тарифы: Computer Use несколько дороже обычной GPT-4o, а поиск по файлам тарифицируется за запросы ( 2.5 долл. за 1000) и объем загруженных данных (10 центов за гигабайт) OpenAI на Youtube ✔️ TypeScript 7.0 будет в 10 раз быстрее. Microsoft анонсировала радикальное улучшение производительности TypeScript за счет новой нативной реализации компилятора, написанной на Go. Он сократит время сборки проектов, ускорит загрузку редакторов и снизит потребление памяти. Уже сейчас тесты показывают: проверка кода VS Code занимает не 77,8 секунд, а всего 7,5. Выпуск TypeScript 7.0 запланирован на конец 2025 года, но тестовую версию уже можно опробовать в GitHub-репозитории. Пока команда сохранит поддержку TypeScript 6.x для проектов, зависящих от старых API. Подробности — в AMA-сессии Discord 13 марта, где авторы ответят на вопросы о будущем экосистемы. devblogs.microsoft.com ✔️ Agora выпустила набор Conversational AI для IoT-устройств. Agora, мировой лидер в области решений для взаимодействия в реальном времени, анонсировала запуск ConvoAI Device Kit — инструментария для разработки голосового ИИ в IoT-устройствах. Совместно с производителем чипов Beken и создателем роботов Robopoet Agora предлагает технологию, которая превращает игрушки, гаджеты и «умные» устройства в эмоционально отзывчивых собеседников. ConvoAI Device Kit объединяет чипы Beken с платформой Agora и обеспечивает распознавание речи с минимальной задержкой, адаптивные диалоги и обработку эмоций. Решение подходит для образовательных игрушек, «умных» домов и носимых гаджетов. agora.io ✔️ Supermicro запускает edge-серверы для AI с процессорами Intel Xeon 6. Supermicro анонсировала линейку компактных серверов, оптимизированных для ИИ. Новые системы оснащены процессорами Intel Xeon 6 с P-ядрами (до 144 вычислительных ядер, увеличенная на 40% пропускная способность памяти и улучшенная энергоэффективность). Новая линейка позволит обрабатывать данные в реальном времени непосредственно на месте их генерации, что критично для телекома, медицины и промышленности. Серверы поддерживают до 512 ГБ DDR5, имеют порты 100 GbE и слот PCIe 5.0 для GPU, что делает их идеальными для медиа-задач и Edge AI. Отдельного представлены системы с процессорами Intel Core Ultra 15-го поколения — они предназначены для IoT и AI-инференса на edge-периферии (до 24 ядер и NPU). supermicro.com ✔️ Cerebras развернёт 6 дата-центров в США и Европе. Cerebras Systems, лидер в области инференса генеративного ИИ, объявила о запуске 6 новых дата-центров. Объекты в США, Канаде и Европе, оснащённые тысячами систем CS-3 на базе Wafer-Scale Engines, обеспечат обработку свыше 40 млн токенов Llama 70B в секунду, что сделает Cerebras крупнейшим поставщиком облачных решений для ИИ. Проект увеличит совокупную мощность компании в 20 раз, удовлетворив растущий спрос клиентов — от Mistral до гигантов вроде HuggingFace. Особое внимание уделено надёжности: дата-центр в Оклахома-Сити, защищённый от торнадо и сейсмической активности, начнёт работу в июне 2025 года. cerebras.ai ✔️ GPUStack — менеджер кластеров GPU с открытым исходным кодом для запуска и масштабирования AI моделей.Позволяет организовать эффективное распределение ресурсов для инференса AI моделей, упрощает развертывание масштабируемых решений и обеспечивает гибкую интеграцию с существующими сервисами и приложениями. Github @ai_machinelearning_big_data #news #ai #ml
2 недели назад
✔️ OpenAI презентовала новые инструменты для разработчиков. OpenAI анонсировала 3 новых инструмента для разработчиков, поддерживаемых в API и доступных через новый SDK. Среди новинок – WebSearch Tool, основанный на дообученной модели GPT-4o/GPT-4o-mini, для поиска информации в интернете. FileSearch Tool - инструмент поиска по документам с возможностью фильтрации по тегам, аналогично функциональности в Ассистентах. Третий - Computer Use (Operator), использующий ту же GPT-4o, предоставляющий доступ к локальному компьютеру пользователя. Опубликованы и тарифы: Computer Use несколько дороже обычной GPT-4o, а поиск по файлам тарифицируется за запросы ( 2.5 долл. за 1000) и объем загруженных данных (10 центов за гигабайт) OpenAI на Youtube ✔️ TypeScript 7.0 будет в 10 раз быстрее. Microsoft анонсировала радикальное улучшение производительности TypeScript за счет новой нативной реализации компилятора, написанной на Go. Он сократит время сборки проектов, ускорит загрузку редакторов и снизит потребление памяти. Уже сейчас тесты показывают: проверка кода VS Code занимает не 77,8 секунд, а всего 7,5. Выпуск TypeScript 7.0 запланирован на конец 2025 года, но тестовую версию уже можно опробовать в GitHub-репозитории. Пока команда сохранит поддержку TypeScript 6.x для проектов, зависящих от старых API. Подробности — в AMA-сессии Discord 13 марта, где авторы ответят на вопросы о будущем экосистемы. devblogs.microsoft.com ✔️ Agora выпустила набор Conversational AI для IoT-устройств. Agora, мировой лидер в области решений для взаимодействия в реальном времени, анонсировала запуск ConvoAI Device Kit — инструментария для разработки голосового ИИ в IoT-устройствах. Совместно с производителем чипов Beken и создателем роботов Robopoet Agora предлагает технологию, которая превращает игрушки, гаджеты и «умные» устройства в эмоционально отзывчивых собеседников. ConvoAI Device Kit объединяет чипы Beken с платформой Agora и обеспечивает распознавание речи с минимальной задержкой, адаптивные диалоги и обработку эмоций. Решение подходит для образовательных игрушек, «умных» домов и носимых гаджетов. agora.io ✔️ Supermicro запускает edge-серверы для AI с процессорами Intel Xeon 6. Supermicro анонсировала линейку компактных серверов, оптимизированных для ИИ. Новые системы оснащены процессорами Intel Xeon 6 с P-ядрами (до 144 вычислительных ядер, увеличенная на 40% пропускная способность памяти и улучшенная энергоэффективность). Новая линейка позволит обрабатывать данные в реальном времени непосредственно на месте их генерации, что критично для телекома, медицины и промышленности. Серверы поддерживают до 512 ГБ DDR5, имеют порты 100 GbE и слот PCIe 5.0 для GPU, что делает их идеальными для медиа-задач и Edge AI. Отдельного представлены системы с процессорами Intel Core Ultra 15-го поколения — они предназначены для IoT и AI-инференса на edge-периферии (до 24 ядер и NPU). supermicro.com ✔️ Cerebras развернёт 6 дата-центров в США и Европе. Cerebras Systems, лидер в области инференса генеративного ИИ, объявила о запуске 6 новых дата-центров. Объекты в США, Канаде и Европе, оснащённые тысячами систем CS-3 на базе Wafer-Scale Engines, обеспечат обработку свыше 40 млн токенов Llama 70B в секунду, что сделает Cerebras крупнейшим поставщиком облачных решений для ИИ. Проект увеличит совокупную мощность компании в 20 раз, удовлетворив растущий спрос клиентов — от Mistral до гигантов вроде HuggingFace. Особое внимание уделено надёжности: дата-центр в Оклахома-Сити, защищённый от торнадо и сейсмической активности, начнёт работу в июне 2025 года. cerebras.ai ✔️ GPUStack — менеджер кластеров GPU с открытым исходным кодом для запуска и масштабирования AI моделей.Позволяет организовать эффективное распределение ресурсов для инференса AI моделей, упрощает развертывание масштабируемых решений и обеспечивает гибкую интеграцию с существующими сервисами и приложениями. Github @ai_machinelearning_big_data #news #ai #ml
2 недели назад
📌LADDER: как научить LLM решать сложные задачи без учителя. Tufa Labs опубликовала пейпер фреймворка LADDER, который дает возможность языковым моделям самостоятельно улучшать навыки решения сложных задач. Технология имитирует человеческое обучение: ИИ разбивает проблемы на простые шаги, создаёт «учебный план» из упрощённых вариантов и постепенно наращивает мастерство решения. Например, модель Llama 3.2 с 3 млрд. параметров, изначально решавшая лишь 1% интегралов студенческого уровня, после обучения по методу LADDER достигла 82% точности. Самые интересные результаты LADDER показал на тесте MIT Integration Bee — ежегодном соревновании по интегральному исчислению. На нем модель Qwen2.5 (7B), доработанная с помощью LADDER, набрала 73%, обойдя GPT-4o (42%) и большинство студентов, а с применением TTRL — результат вырос до 90%. Это превзошло даже показатели OpenAI o1, хотя последний не использовал числовую проверку решений. TTRL (Test-Time Reinforcement Learning) — это метод «микрообучения», который позволяет языковым моделям адаптироваться к сложным задачам прямо во время их решения. В основе LADDER - принцип рекурсивной декомпозиции: модель разбивает непосильную задачу на цепочку постепенно усложняющихся шагов, создавая собственную «учебную программу». Столкнувшись со сложным интегралом, ИИ генерирует его упрощённые версии — снижает степень полинома, убирает дробные коэффициенты или заменяет составные функции базовыми. Каждый такой вариант становится ступенью, ведущей к решению целевой задачи. Работа фреймворка делится на три этапа: Первый — генерация «дерева вариантов»: модель создаёт десятки модификаций задачи, ранжируя их по сложности. Второй — верификация: каждое решение проверяется численными методами (например, сравнение значений интеграла в ключевых точках). Третий — обучение с подкреплением: система поощряет успешные стратегии, используя баллы за правильные ответы и штрафуя за ошибки. Дополняющее применение TTRL позволяет проводить «экспресс-тренировки» прямо во время теста: ИИ генерирует варианты конкретной задачи и адаптируется к ней за секунды, не требуя вмешательства человека. 🟡Arxiv @machinelearning #AI #ML #RL #LADDER #Paper
2 недели назад
🔥 «The State of LLM Reasoning Models» свежая статья от Себастьяна Рашка, которая посвящена современному состоянию исследований в области рассуждений (reasoning) и масштабирования выводов (inference scaling) для больших языковых моделей (LLM). Основные моменты: - Эволюция возможностей рассуждения: В статье показано, как с увеличением размеров моделей и вычислительных ресурсов появляются «внезапные» способности, позволяющие моделям выполнять сложное логическое и пошаговое рассуждение. Это включает методы вроде chain-of-thought, которые помогают моделям структурировать ответ. - Масштабирование и его эффекты: Анализируются закономерности масштабирования — как увеличение числа параметров и использование более мощных аппаратных средств влияет на точность и способность моделей к рассуждению. Выявляются пределы, где дополнительные вычисления начинают давать менее заметное улучшение. - Инновации в инференсе: Статья рассматривает новые подходы к оптимизации процесса инференса, что особенно важно для применения LLM в реальном времени и на устройствах с ограниченными ресурсами. Поднимается вопрос балансировки между качеством ответов и затратами на вычисления. - Практические выводы для исследований: Сатья служит ориентиром, показывающим, какие направления развития (например, улучшение алгоритмов рассуждения, оптимизация инференс-методов) могут принести наибольший эффект при дальнейшем увеличении масштабов моделей. Это позволяет понять, куда двигаться в будущих исследованиях и как лучше интегрировать существующие технологии в практические приложения. Отличное воскресенье чтиво 📕 📌 Читать #ai #ml #reasoning #llm
2 недели назад