Ни одна современная камера не сравнится с глазами человека. Если человек смотрит на восход и закат, когда виден огромный разрыв между светлыми и темными тонами, он в состоянии разглядеть мельчайшие детали. Камерам же сложно в этих ситуациях. В результате получается фотографии с угольно чёрными тенями и слепяще белыми светлыми участками.
Исследователи из университета Гонконга и Даляньского технологического университета предложили новый метод преобразования изображений в визуально привлекательное, с помощью глубоких нейронных сетей.
Предлагаемый метод исправляет изображение со слишком или недостаточно долгой экспозицией и привносит много деталей. Метод работает со стандартным LDR изображением (изображение LDR — это изображение с низким динамическим диапазоном), и создает улучшенное изображение, всё ещё в диапазоне LDR, но визуально обогащенное восстановленными деталями. Глубокая нейронная сеть возвращает детали, которые лежат в диапазоне HDR (высокий динамический диапазон), но уменьшились в диапазоне LDR. Здесь и кроется вся магия.
Как это работает?
Новый метод называется Deep Reciprocating HDR Transformation, он работает путем применения взаимного преобразования, использующего две глубокие нейронные сети. Идея работы проста: взяв образ LDR, детали реконструируются в области HDR и изображение переводится обратно в область LDR, обогащенную деталями. Хотя это звучит просто, есть два трюка, о которых расскажем ниже.
Чтобы сделать взаимное преобразование, используются две сверточные нейронные сети (CNN). Первая называется сетью HDR оценки, она принимает входное изображение, кодирует в скрытое представление более низкого диапазона, а затем декодирует это представление для восстановления HDR изображения. Вторая, называемая сетью LDR коррекции, выполняет обратное преобразование: принимает оцененное HDR изображение из первой сети и выводит исправленное LDR изображение. Обе сети — простые автокодировщики, кодирующие данные в скрытое представление размера 512.
Эти две сети обучаются совместно и имеют одинаковую архитектуру. Однако, как уже упоминалось выше, есть два трюка: оптимизация и функция затрат, которые дают решение проблемы.
Про решение проблем я пока, промолчу, это статья взята из интернета
Спасибо)