Найти в Дзене
ЛомкаГоловы

Сколько решений у "Магического кубика"?

Как известно, количество возможных состояний кубика Рубика равно
43 252 003 274 489 856 000 (43 квинтиллиона 252 квадриллиона 3 триллиона 274 миллиарда 485 миллионов 856 тысяч).

Откуда же берётся такая цифра? А вот откуда:
(количество расстановок реберных кубиков) х
х(количество расстановок угловых кубиков) х
х (количество комбинаций поворотов реберных кубиков) х
х (количество комбинаций поворотов угловых кубиков). Стало понятнее? Не думаю. Тогда давайте узнаем подробнее что к чему относится.

Реберных кубиков в кубике Рубика 12. Значит, первый кубик можно расставить по 12 местам, второй кубик – на 11 мет, 3 кубик - на 10 мест четвертый - на 9 и так далее до последнего. То есть, количество всех расстановок реберных кубиков равно
12 * 11 * 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1 = 479001600.
Записывается это как 12! (12-факториал).

Аналогичным образом посчитаем количество всех расстановок угловых кубиков. Их 8, а значит,
8! = 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1 = 40320.

Теперь посчитаем количество ВСЕХ комбинаций поворотов реберных кубиков. Каждый из 12 реберных кубиков может иметь только 2 ориентации - 0 и 180 градусов, поэтому, 2 в 12 степени = 4096.

Точно так же посчитаем количество всех ориентаций угловых кубиков: 3 в 8 степени = 6561.

Казалось бы, можно перемножить полученные 4 числа, и всё готово. Но не всё так просто. Пока что цифра получится гораздо больше. Отсечём лишнее.

Если кубики выведены из правильного положения только допустимыми вращениями (а не физической разборкой и новой сборкой всего устройства или перекраской граней), то не может возникнуть положение, при котором:

  1. все средние кубики стоят на своих местах и только один из них повернут неправильно;
  2. все средние кубики и стоят, и повернуты правильно, а все угловые кубики, кроме двух, стоят (в любых положениях) на своих местах;
  3. все средние кубики и стоят, и повернуты правильно, а все угловые кубики стоят на своих местах и только один из них повернут неправильно.

В соответствии с первым свойством не может быть развёрнут только один реберный кубик, значит, его ориентацию мы тоже не будем учитывать. Поэтому 2 в 12 степени поделим на 2, что равно 2 в 11 степени. Получим 2048.

Исходя из третьего свойства, по которому не может быть повернут неправильно только один угловой кубик (а значит, можно не учитывать его ориентацию), подкорректируем подсчёт всех ориентаций угловых кубиков до минимально необходимого. То есть, поделим на 3, или запишем 3 в 7 степени, что равнозначно. Получится 2187.

Ну и последняя корректировка основана на втором свойстве. Она отсекает невозможные перестановки. То есть, если мы уже расставили на свои места (в любой ориентации) 6 из 8 угловых кубиков, то последние 2 обязательно встанут каждый на своё место. Помните, как мы считали расстановку углов? (От 8 возможных мест для первого кубика до одного места для последнего кубика.) Так вот, множители для последних кубиков можно теперь не учитывать. Поделим 8! на 2, получим 20160.

Итак, теперь Вы понимаете, что и откуда взялось в этой формуле, а значит можно смело перемножать полученные числа:
12! * 8!/2 * 211 * 37 = 12! * 8! * 210 * 37.
Можно ещё разложить 12! и 8! на простые числа, тогда получим
227 * 314 * 53 * 72 * 11 = 43252003274489856000.
Или просто перемножить заранее вычисленные 4 числа:
479001600 * 20160 * 2048 * 2187 = 43 252 003 274 489 856 000.

-2

Теперь вы знаете, сколько комбинаций имеет кубик Рубика. Эта статья вышла очень тяжелой в плане смысловой нагрузки, но обещаю, что это последняя такая статья. Просто по-другому эту тему было не объяснить.

Вам интересна тема головоломок? Добро пожаловать на мой канал)) Комментируйте, задавайте вопросы, ставьте лайки и получайте удовольствие от статей.

Счастливых вам головоломок и пусть логика всегда будет с вами!!!