Найти тему
Order Lyrics

Эксперимент взорвавший людям мозг! Наблюдающий влияет на реальность!

Опыт Юнга с двумя щелями и явление интерференции

В 1801 году Томас Юнг провёл свой знаменитый эксперимент с двумя щелями. Он создал конструкцию с двумя узкими щелями, через которые проходили лучи света и попадали на лист бумаги, охватывая его полностью. Юнг увидел на листе бумаги светлые и тёмные полосы, что свидетельствовало о наличии у света явления интерференции.

Интерференция — перераспределение интенсивности света в результате наложения (суперпозиции) нескольких световых волн.

Суть опыта Юнга: фотоны, а также частицы (например, электрон) создают волновую картину, когда используются две щели.

Световые волны, исходящие из двух щелей, интерферировали друг с другом (накладывались друг на друга), вследствие чего на экране появлялись светлые полосы (усиливающая интерференция) и тёмные полосы (ослабляющая интерференция).

Опыт Юнга изменил сознание современников — с того момента весь научный мир считал свет волной и продолжал развивать и дорабатывать эту теорию, закрывая пробелы и разрешая парадоксы. Оставалось дать объяснение многим деталям, наиболее таинственной из которых оставался вопрос о прохождение волн сквозь пустое пространство, в частности через космический вакуум, так как для их распространения нужна среда.

Учёные начали совершенствовать старую теорию невидимого эфира, заполняющего собой всё пространство. Эфир должен был представлять собой вещество, не оказывающее сопротивления проходящим через него объектам, но в то же время способное переносить свет на огромные расстояния, измеряющиеся миллионами километров.

Параллельно с развитием и поиском подтверждения теории эфира сторонники концепции волновой природы света продолжали доказывать её справедливость. Очередным указанием стало определение скорости света в разных средах.

Гипотеза светоносного эфира: Земля движется через «среду» эфира, несущего свет.

Согласно корпускулярной теории скорость света должна увеличиться при переходе из менее плотной среды в более плотную. Однако исследования Жана Бернарда Леона Фуко и Армана Ипполита Луи Физо показали обратный результат, что соответствовало волновой природе света.

Свет как электромагнитная волна и фотоэлектрический эффект

В 1873 году Джеймс Клерк Максвелл опубликовал свой двухтомный труд «Трактат об электричестве и магнетизме», в котором описал свет как электромагнитную волну и смог рассчитать его скорость:

Она (подразумевается вычисленная скорость) настолько близка к скорости света, что кажется, будто мы имеем серьёзное основание заключить, что сам свет (включая тепловое излучение и другие виды излучения, если таковые имеются) является электромагнитным возмущением в форме волн.

Однако теория Максвелла имела недостаток — она строилась на модели механического эфира. В 1887 году Альберт Майкельсон и Дэвид Морли провели опыт, желая доказать существование эфира, но результат оказался диаметрально противоположным. Тогда учёным-физикам пришлось обратиться к концепции Майкла Фарадея о существовании электрических и магнитных полей.

Теорию Максвелла собирался подтвердить Генрих Рудольф Герц, но открыл явление фотоэффекта, которое заставило научное сообщество вспомнить о существовании корпускулярной теории света.

Эйнштейн объясняет фотоэлектрический эффект

В 1905 году Альберт Эйнштейн объяснил фотоэффект, опираясь на квантовую гипотезу Планка (энергия электромагнитной волны может излучаться и поглощаться исключительно целыми порциями — квантами).

Фотоэлектрический эффект — явление вылета электрона из твёрдых и жидких тел под воздействием электромагнитного излучения.

Учёный предположил, что электромагнитная волна (которой считался свет) состоит из световых квантов (фотонов). Поглощение света происходит так, что фотоны квантами передают собственную энергию электронам вещества.

Читайте также: Эйнштейн о Боге и религии.

При фотоэффекте часть электромагнитного излучения отражается от поверхности металла, а другая попадает внутрь и там поглощается. Электрон получает энергию от фотона и совершает работу выхода из вещества, приобретая начальную скорость. Формула:

где h — постоянная Планка, n — частота электромагнитного излучения, A — работа выхода, mv^2/2— кинетическая энергия вышедшего электрона.

Это уравнение объясняет все законы внешнего фотоэлектрического эффекта:

Суммарное число фотоэлектронов, покидающих поверхность вещества, прямо пропорционально числу фотонов, попадающих на поверхность вещества.

Максимальная кинетическая энергия фотоэлектрона зависит от частоты электромагнитного излучения и работы выхода, но не зависит от интенсивности электромагнитного излучения.

Для каждого вещества есть граница частоты электромагнитного излучения, ниже которой фотоэффект не наблюдается. Эта частота и соответствующая длина волны называется красной границей фотоэффекта. Она зависит от работы выхода, химической природы вещества и состояния поверхности.

В итоге физики смогли прийти к заключению и открыли новое явление: корпускулярно-волновой дуализм.

Корпускулярно-волновой дуализм (квантово-волновой дуализм) — явление, заключающееся в том, что материальные объекты при одних определённых условиях ведут себя как классические волны, а при других — как классические частицы.

В 1923 году Луи де Бройль предположил, что не только свет обладает корпускулярно-волновым дуализмом — но и элементарные частицы.

Дифракция электронов на щели подтверждает теорию корпускулярно-волнового дуализма. Источник изображения: school-collection.edu.ru.

Электрон, нейтрон, фотон в одних условиях ведут себя как частицы, обладающие определёнными энергиями и импульсами, а в других — как волны, что проявляется в их способности к интерференции и дифракции. Наукой, которая рассматривает объекты с точки зрения квантово-волнового дуализма, стала квантовая механика.

Материал по теме: Квантовая физика для начинающих.

Чтобы наглядно представить явление квантово-волнового дуализма, вернёмся к уже знакомому нам эксперименту Томаса Юнга — опыта с двумя щелями.

Через щели теперь будут пропускать лишь одну элементарную частицу — электрон. Квантовая механика демонстрирует нам удивительную картину: пока данная элементарная частица не попадёт на экран, она не будет занимать определённого положения в пространстве.

Частица не летит по какой-либо траектории — её «путь» представляет собой систему эволюционирующего набора вероятностей того, какими путями она может двигаться. В данный момент времени эта частица находится нигде. А когда мы начинаем непосредственное наблюдение, мы видим мы её лишь в одном из всех возможных положений.

Здесь мы и знакомимся с эффектом наблюдателя.

Эффект наблюдателя простыми словами

Эффект наблюдателя — теория, что наблюдение за объектом изменяет его свойства.

В квантовой механике термин «наблюдатель» используется в значении, когда мы что-то измеряем. Если в макромире нам достаточно применить какой-либо измерительный прибор (например, нам нужно узнать длину простого карандаша — мы используем для этой цели линейку), чтобы узнать точное или приблизительное значение, то в микромире любая попытка наблюдения (измерения) изменит квантовую систему.

Объяснение эффекта наблюдателя простыми словами.

Проще всего это демонстрируется при помощи мысленного эксперимента Эрвина Шрёдингера.

Есть закрытый ящик, в котором находится живой кот и механизм: счётчик Гейгера с радиоактивным веществом, молоток и колба смертельного яда.

Колба может быть разбита механизмом, приводимым в действие радиоактивным распадом. Однако распад носит вероятностный характер — 50/50.

Если распад произойдёт, то молоток разобьёт колбу и смертельный яд убьёт кота. Если распада не произойдёт, то механизм не сработает и кот будет жив.

Шрёдингер заключил, что пока мы не откроем ящик и не узнаем состояние кота, то он жив и мёртв одновременно. Когда же мы открываем ящик, то видим перед собой кота лишь в одном из возможных состояний.

Визуализация мысленного эксперимента Шредингера

Более поздние исследования показали, что наблюдение как изменение свойств объектов микромира распространяется не только на одну конкретную частицу, но и на другие объекты, находящиеся во взаимодействии с ней. Из этого следует эффект квантовой запутанности. Вкратце это:

Если выбрать одну частицу из определённого количества частиц и повлиять на неё, то состояние изменится у остальных частиц, независимо от условий.

Заключение

Эффект наблюдателя, безусловно, входит в разряд величайших научных открытий, изменивших мир, как и вся квантовая физика.

Если сравнить взгляды на разные явления, которые встречаются в нашей жизни повседневно, с взглядами на них древнегреческих философов или научных деятелей семнадцатого века, то станет ясно, что современная наука проделала огромный путь.

Мы смотрим на мир другими глазами, зная о новейших научных открытиях и экспериментах. Конечно, квантовой физике ещё предстоит решить множество парадоксов и найти ответы на сложные вопросы. Для этого необходимо изучать науку — вы, кстати, можете ознакомиться с фундаментальными трудами ниже (после Q&A) и изучить вопрос основательнее.

Эффект наблюдателя — простые ответы на сложные вопросы

Чем же в итоге является свет?

Свет — своего рода парадокс. Он не является ни волной, ни частицей, но проявляется и те, и другие свойства, которые взаимно дополняют друг друга.

Что из себя представляет квантово-волновой дуализм сегодня?

На сегодняшний день квантово-волновой дуализм имеет значение, скорее, для общего понимания эволюции физики и более интересен историкам, а не физикам, так как представляет собой историческую ценность, а не научную.

Почему сегодня квантовый дуализм потерял научную ценность?

Сейчас существует более двух способов описания материального объекта (корпускулярный, волновой, термодинамический и т.д.) Кроме того, противопоставлять и сравнивать материальный объект некорректно.

Почему спустя столько лет опыт Юнга показал иной результат?

Дело в том, что возможность запустить в щель лишь один электрон появилась лишь с появлением нового оборудования. У Томаса Юнга в девятнадцатом веке просто не было такой возможности.

Думал ли кто-то о квантово-волновом дуализме раньше его появления?

Вряд ли. Учёные опирались на работы своих предшественников и зачастую боялись отступиться от уже сформированной картины мира. Именно поэтому до конца девятнадцатого века физики надеялись доказать существование эфирной среды. Тем более квантовая физика совершенно не похожа на классическую. Многие законы квантовой физики для классического варианта абсурдны.