Найти тему
СкопусБукинг

Нидерландский журнал в Скопус, первый квартиль (математическая физика), European Journal of Mechanics, A/Solids

Уважаемые коллеги, доброго времени суток! Мы начинаем обзор изданий в области Математической физики. Сегодня хотим представить вашему вниманию нидерландское научное издание European Journal of Mechanics, A/Solids. Журнал имеет первый квартиль, издаётся в Elsevier BV, его SJR за 2021 г. равен 1,155, импакт-фактор 4,873, электронный ISSN - 0997-7538, предметные области - Математическая физика, Физика и астрономия, Материаловедение, Сопротивление материалов, Машиностроение. Вот так выглядит обложка:

Редактором является Марк Гирс, контактные данные - m.g.d.geers@tue.nl, ejmsol@elsevier.com.

-2

К публикации принимаются статьи на английском языке во всех областях механики твердого тела, от физико-математических основ до материаловедения, технологических приложений и методов современной вычислительной механики, как общих, так и прикладных исследований.

Адрес издания - https://www.sciencedirect.com/journal/european-journal-of-mechanics-a-solids

Пример статьи, название - Static and dynamic thermal post-buckling analysis of imperfect sigmoid FG cylindrical shells resting on a non-uniform elastic foundation. Заголовок (Abstract) - In this study, an approach combining semi-analytical and analytical methods is utilized to investigate the dynamic and static thermal post-buckling behavior of imperfect sigmoid functionally graded (SFG) cylindrical shells in a thermal environment. Two types of SFG cylindrical shells consisting of ceramic-metal-ceramic (CMC) layers and metal-ceramic-metal (MCM) layers are considered. The structure is considered to rest on a non-uniform elastic foundation, and the parameters of elastic foundation used in the research are defined by using Selvadurai's methodology. Material distributions of the shells are graded through the thickness direction following a sigmoid distribution in terms of volume fraction. The nonlinear governing equation of the cylindrical shells is derived by applying the von-Kármán equation and the Donnell shell theory. Based on Galerkin's method, a discretized nonlinear governing equation is obtained for analyzing the behavior of the shells. To systematically study the dynamic thermal post-buckling response of the shells, the fourth-order P-T method is utilized. The research results obtained are verified. Moreover, to further validate the dynamic thermal post-buckling, comparisons are made with the fourth-order Runge-Kutta method. It is noted that the fourth-order P-T method has illustrated advantages over that of the fourth-order Runge-Kutta method in terms of accuracy and reliability. Furthermore, the fourth-order P-T method consumes less CPU time than that of the fourth-order Runge-Kutta method. Keywords: Sigmoid FG cylindrical Shell; Static and dynamic thermal post-buckling; Thermal environment; Imperfection; Non-uniform elastic foundation; P-T method; Selvadurai methodology

Наука
7 млн интересуются