Если зашифровать цифры с помощью трех линий (некоторые из них сплошные, а другие прерывистые), то следующие знаки на картинке будут обозначать 6, 1 и 3.
Я упоминала исключительно сложную задачу разложения числа на простые множители. Основная теорема арифметики утверждает, что такое разложение единственно, с точностью до перестановки множителей. То есть какое бы число не взяли для него точно найдется простой делитель. В некоторых случаях этим делителем будет само число. Тогда оно простое. Но знать, что у задачи есть решение, не значит решить. Попробуйте, например, разложить на простые множители следующие числа: 6, 42, 161, 1643, 567 109. Это задача для шестого класса...