DeepSeek опять шатают устои архитектуры трансформеров свежайшим пейпером, который доказывает, что новое — это хорошо и очень хитро забытое старое. Пока все пытаются запихнуть в LLM как можно больше слоев и параметров, DeepSeek задались вопросом: зачем тратить дорогой компьют на запоминание фактов, если их можно просто подсмотреть? Знакомьтесь: 🟡Engram — модуль, который возвращает нас к дедам с N-грамами. DeepSeek предлагает разделить "думалку" (MoE-слои) и "хранилище знаний" (Engram): 🟢Hashed N-grams: модуль смотрит на входящий текст и нарезает его на N-грамы (последовательности токенов). 🟢O(1) Lookup: система делает мгновенный запрос в гигантскую хэш-таблицу эмбеддингов - это чисто статический поиск. 🟢Context-Aware Gating: самый сок. Модель не просто слепо берет данные из "хранилища знаний" - специальный гейтинг-механизм решает: "Нам сейчас нужен факт из памяти или будем думать сами?". Если найденный N-грам релевантен контексту, он подмешивается в скрытое состояние. 🟢Token