Найти в Дзене
Машинное обучение

⚡️ DeepSeek Engram: условная память LLM через поиск

DeepSeek опять шатают устои архитектуры трансформеров свежайшим пейпером, который доказывает, что новое — это хорошо и очень хитро забытое старое. Пока все пытаются запихнуть в LLM как можно больше слоев и параметров, DeepSeek задались вопросом: зачем тратить дорогой компьют на запоминание фактов, если их можно просто подсмотреть? Знакомьтесь: 🟡Engram — модуль, который возвращает нас к дедам с N-грамами. DeepSeek предлагает разделить "думалку" (MoE-слои) и "хранилище знаний" (Engram): 🟢Hashed N-grams: модуль смотрит на входящий текст и нарезает его на N-грамы (последовательности токенов). 🟢O(1) Lookup: система делает мгновенный запрос в гигантскую хэш-таблицу эмбеддингов - это чисто статический поиск. 🟢Context-Aware Gating: самый сок. Модель не просто слепо берет данные из "хранилища знаний" - специальный гейтинг-механизм решает: "Нам сейчас нужен факт из памяти или будем думать сами?". Если найденный N-грам релевантен контексту, он подмешивается в скрытое состояние. 🟢Token

⚡️ DeepSeek Engram: условная память LLM через поиск.

DeepSeek опять шатают устои архитектуры трансформеров свежайшим пейпером, который доказывает, что новое — это хорошо и очень хитро забытое старое.

Пока все пытаются запихнуть в LLM как можно больше слоев и параметров, DeepSeek задались вопросом: зачем тратить дорогой компьют на запоминание фактов, если их можно просто подсмотреть? Знакомьтесь:

🟡Engram — модуль, который возвращает нас к дедам с N-грамами.

DeepSeek предлагает разделить "думалку" (MoE-слои) и "хранилище знаний" (Engram):

🟢Hashed N-grams: модуль смотрит на входящий текст и нарезает его на N-грамы (последовательности токенов).

🟢O(1) Lookup: система делает мгновенный запрос в гигантскую хэш-таблицу эмбеддингов - это чисто статический поиск.

🟢Context-Aware Gating: самый сок. Модель не просто слепо берет данные из "хранилища знаний" - специальный гейтинг-механизм решает: "Нам сейчас нужен факт из памяти или будем думать сами?". Если найденный N-грам релевантен контексту, он подмешивается в скрытое состояние.

🟢Tokenizer Compression: чтобы хранилище знаний не лопнуло от мусора, похожие токены в нем схлопывают в один ID, например, "Apple" и "apple".

🟡Баланс распределения ресурсов.

Чтобы правильно поделить бюджет параметров между MoE и Engram посчитали сценарии масштабирования. График лосса от соотношения этих частей выглядит как буква U:

🟠Перекос в MoE (100% вычислений): модель тратит дорогие слои внимания на запоминание статики. Это неэффективно, лосс высокий.

🟠Перекос в Память (0% вычислений): модель превращается в гигантскую википедию. Она помнит факты, но у нее напрочь атрофируется ризонинг. Лосс тоже высокий.

🟢Золотая середина (дно U-кривой): 80% MoE и ~20% Engram.

🟡Тесты и результаты.

DeepSeek обучили модель Engram-27B и сравнили ее с классической MoE-27B при одинаковом бюджете параметров и FLOPs. Итоги:

Общее качество подросло: MMLU +3.4 пункта, HumanEval (код) +3.0.

На длинном контексте - разнос. В тесте на поиск иголки (NIAH) точность выросла с 84.2 до 97.0. Модель разгрузила слои внимания от запоминания локальных паттернов, и оно сфокусировалось на глобальном контексте.

Модель быстрее сходится. Engram берет на себя рутину в ранних слоях, тем самым позволяя модели сразу учиться сложным вещам.

🟡Архитектурный нюанс.

Таблица эмбеддингов для Engram может быть запредельно огромной (в пейпере разгоняли до 100B параметров) и, очевидно, в VRAM это не влезает.

Решили так: раз ID токенов известен до прогона слоя, то эти данные можно хранить в RAM и асинхронно подтягивать. В реале, оверхед от этой механики показал меньше 3%., т.е. мы получаем модель, которая знает больше, чем влезает в GPU, используя оперативку сервера.

🟡DeepSeek фактически легализовала подобие шпаргалок для LLM.

Вместо того чтобы заставлять модель учить все наизусть, ей дают гигантский справочник. Теоретически, это открывает путь к прекрасному ИИ светлого будущего, который может иметь условно-бесконечную память, ограниченную только объемом оперативки, а не VRAM.

Похоже, в V4 мы увидим как эта схема работает, ведь инсайдеры обещают у нее запредельные скилы.

🟡Техотчет

🖥Github

@machinelearning

#AI #ML #LLM #Engram #Deepseek

-2
-3
Deep Seek
20,9 тыс интересуются