Суровая реальность нашего времени: вы хотите сгенерировать 5-секундное видео на большой SOTA-модели. Вы запускаете промпт, идете пить кофе, возвращаетесь, а процесс все еще идет. И зачастую генерация может занимать больше часа. Главные виновники - чудовищная вычислительная сложность механизма внимания в трансформерах, необходимость сотен шагов денойзинга и огромный объем памяти для весов в полной точности. Авторы проекта TurboDiffusion из Цинхуа и Беркли решили собрать все эффективные методы сжатия и ускорения в один пайплайн. Их идея заключалась в том, что разреженность и квантование — это техники, которые не мешают друг другу. 🟡Архитектура держится на 3-х китах оптимизации: 🟢Заменили стандартное внимание на гибрид из SageAttention2++ и Sparse-Linear Attention (SLA), который превратил квадратичную сложность в линейную. чтобы модель фокусировалась только на важных токенах. 🟢Дистиллировали сэмплинг через rCM - вместо стандартных 50–100 шагов модель приходит к результату всего за