Построить график уравнения, если a, b – постоянные числа и a < b : Рассмотрим сначала выражение вида Оно будет иметь смысл, если стоящее под корнем произведение неотрицательно: t·|t| ⩾ 0 Так как |t| всегда больше нуля или равен ему, то чтобы выполнялось указанное неравенство необходимо и достаточно потребовать неотрицательность t. В таком случае |t| = t и С учётом этого установленного факта перейдём к рассмотрению данного в условии задачи уравнения: (предпоследний равносильный переход с заменой неравенства y ⩽ b на x ⩽ b выполнен на основании того, что y = x). В целом полученный результат говорит о том, что график рассматриваемого уравнения представляет собой отрезок, являющийся частью графика линейной функции y = x, ограничиваемой слева и справа вертикальными прямыми x = a и x = b соответственно. Другие задания, имеющиеся на канале, можно найти здесь: Сведения о новых статьях блога можно найти в Telegram-канале Shuric_Himik