Найти в Дзене
Клуб ОЦО

Внедрение искусственного интеллекта: готова ли к нему ваша организация

В пирамиду потребностей человека (пирамида Маслоу) логично укладывается одна из популярных и известных теорий мотивации — теория иерархии потребностей: от простых физиологических потребностей через социальные потребности к самовыражению. Руководствуясь этой логикой, любую потребность организации нельзя рассматривать в отрыве от уровня автоматизации ее процессов: начальный уровень автоматизации указывает на начальные потребности из иерархической модели, и наоборот — высокий уровень автоматизации открывает двери к ее продвинутым уровням. Вот почему, планируя внедрение ИИ в компании, необходимо четко и строго выдерживать последовательность отдельных этапов развития — совершенствования, автоматизации, цифровизации и т.п. Если этого не сделать, последствия будут не самыми приятными: Отклонение и «перескакивание» из одного состояния в другое (без должной автоматизации к цифровизации и далее), нарушение правила эволюционного развития ИТ приводит к лишним тратам и разочарованиям от не достигну
Оглавление

Тема искусственного интеллекта становится все более популярной в последние годы. Однако далеко не все компании пока еще готовы к внедрению инструментов ИИ. Дмитрий Басистый, директор департамента стратегии и консалтинга Rubytech, рассказал Клубу ОЦО, как компании оценить свою готовность к внедрению ИИ, с каких инструментов следует начинать и почему часто оптимизация и автоматизация бизнес-процессов могут принести гораздо больший эффект, чем ИИ.

Потребности человека и организации через призму теории Маслоу

В пирамиду потребностей человека (пирамида Маслоу) логично укладывается одна из популярных и известных теорий мотивации — теория иерархии потребностей: от простых физиологических потребностей через социальные потребности к самовыражению.

Руководствуясь этой логикой, любую потребность организации нельзя рассматривать в отрыве от уровня автоматизации ее процессов: начальный уровень автоматизации указывает на начальные потребности из иерархической модели, и наоборот — высокий уровень автоматизации открывает двери к ее продвинутым уровням.

Вот почему, планируя внедрение ИИ в компании, необходимо четко и строго выдерживать последовательность отдельных этапов развития — совершенствования, автоматизации, цифровизации и т.п.

Если этого не сделать, последствия будут не самыми приятными:

  • автоматизация неупорядоченных бизнес-процессов приводит к возникновению «автоматизации хаоса»;
  • начинать цифровизацию с низкого уровня автоматизации — это прямой путь к «цифровизации хаоса»;
  • «недоцифровизованная» организация, которая еще не получила всех преимуществ перехода к цифровой модели деятельности, но смело внедряет технологии ИИ — угроза самой себе.

Отклонение и «перескакивание» из одного состояния в другое (без должной автоматизации к цифровизации и далее), нарушение правила эволюционного развития ИТ приводит к лишним тратам и разочарованиям от не достигнутых в полной мере результатов.

Собираем инструменты ИИ в классификационную пирамиду

Искусственный интеллект можно условно разделить на два сегмента: дискриминативный и генеративный. Инструменты из первого сегмента анализируют различия между типами данных и классифицируют их. Второй сегмент содержит средства, которые используют наборы данных для обучения и генерации (комбинации) на их основе новых данных — например, ответов на запросы.

К дискриминативному ИИ можно отнести такие технологии, как распознавание образов и видеоаналитика, системы преобразования текста в речь и обратно, системы советов на основе предпочтений и т.п. (так называемые «классификаторы»). Эти технологии — начальный уровень (уровень 1) в пирамиде потребностей в технологиях ИИ (см. рис. 1), освоить который сможет подавляющее большинство компаний. Стоит отметить, что такие технологии развиваются достаточно давно, и на отечественном ИТ-рынке существует множество апробированных продуктов и решений.

Генеративный ИИ содержит 4 типа технологий и инструментов:

  • чат-боты (уровень 2);
  • роботизация бизнес-процессов (robotic process automation, RPA) (уровень 3);
  • системы поддержки принятия решений (уровень 4);
  • автономные интеллектуальные агенты (уровень 5, наивысший).

Их объединяет не только родственное назначение, но и общие технологии. Все чаще они опираются на специальный класс систем машинного обучения — большие языковые (LLM) или мультимодальные модели (LMM).

Рис.  1 Основные типы технологий и инструментов ИИ, их сегментация по аналогии с теорией Маслоу
Рис. 1 Основные типы технологий и инструментов ИИ, их сегментация по аналогии с теорией Маслоу

Технологии ИИ уровней 1–3 (классификаторы, чат-боты, роботы) уже достаточно хорошо известны и обладают общим свойством – действуют на основе поручений, то есть не способны к «самостоятельному» принятию решений «от рождения» — by design.

Следующие два уровня в пирамиде потребностей в технологиях ИИ (уровни 4 и 5) представлены инструментами, действующими уже на основе полномочий, то есть способны принимать «самостоятельные» решения.

Полный текст: https://sscclub.ru/article/vnedrenie-iskusstvennogo-intellekta-gotova-li-k-nemu-vasha-organizacija/