Многим известно, что взаимодействие двух тел можно сравнительно просто описать, это всего два уравнения со второй производной, или четыре уравнения с первой производной. Такую систему удается решать даже аналитически, так что движение двух тел описано очень хорошо. Во многих задачах астрономии можно пренебречь взаимодействием с очень далекими объектами и свести задачу к задаче о взаимодейтствии двух тел.
Если же влияние третьего объекта на два взаимодействующих объекта значительно, задача неизбежно становится задачей о трех телах и ее сложность возрастает несоразмерно увеличению количества уравнений (6 уравнений с первой производной вместе 4-х). Решения в общем виде для системы трех тел нет. В 19 веке Анри Пуанкаре доказал, что существует бесконечно много частных решений задачи трёх тел. Немало частных решений ученые нашли аналитически, но значительно увеличилось количество известных частных решений только при использовании численного моделирования (итерационный алгоритм для решения дифференциальной модели для компьютера).
Кроме того, что система из трех тел имеет колоссальное количество частных периодических решений, в ней было обнаружено поведение, соответствующее режиму детерминированного хаоса. Если в некоторой области космоса недалеко друг от друга движутся три массивных объекта, их движение может оказаться хаотичным и его будет чрезвычайно сложно прогнозировать. Есть быть более точным, прогноз будет относительно неплохим на ближайшее будущее, но чем дальше прогноз, тем он хуже из-за быстрого разбегания соседних траекторий в фазовом пространстве.
Явление, при котором небольшие возмущения (шум или другое воздействие) в системе приводят к непредсказуемым по масштабу изменениям в ближайшем будушем, называют эффектом бабочки, "взмах крыльев которой в одном штате может привести к торнадо в другом штате". Стоит еще отметить, что взаимодейтвие трех тел не обязательно на практике приведет к возникновению хаотического поведения. Все зависит от начальных условий, которые нам обычно неизвестны. В зависимости от стартовых положений и скоростей тела могут "выйти на периодический режим" или демонстрировать хаотическое поведение. Возможно, при определенном воздействии на систему из трех тел можно добиться перехода в другой режим, например, из хаотического в периодический, тогда можно говорить о контроле хаоса.
p. s. Чтобы сразу увидеть новый материал в моем блоге в своей ленте, подписывайтесь! Буду рад комментариям, вопросам, предложениям.