Ежегодно на рынке появляются тысячи IT-решений, как для бизнеса, так и для гражданской отрасли. Мир постепенно перенасыщается новыми разработками, увеличивается количество решений с искусственным интеллектом. Это и стало подспорьем для создания новых рабочих мест, в большинстве из которых мало специалистов. Давайте поговорим о новых тенденциях и актуальных профессиях 2024 года, как быстро подстроиться под потребности рынка и совершить переход из смежных профессий.
Инженер безопасности нейросетей
Профессия находится на стыке областей программирования, кибербезопасности и Machine learnings. Такой инженер разбирается в самих нейросетях, безопасности, и понимает основы работы с искусственным интеллектом. Потребность в таких специалистах растет быстрее, чем те появляются. Сейчас они в основном «рождаются» внутри компаний, где развивают использование ИИ, а не нанимаются с внешнего рынка.
В обязанности сотрудника данной специализации входит: обеспечение безопасности и защиты искусственно-нейронной сети в самых разных сферах, к примеру, компьютерного зрения или распознавания живой речи; идентификация потенциально слабых мест в нейросетях; поиск проблемных зон с помощью анализа алгоритмов; защита от кибератак.
Также требуются специалисты, которые выстраивают политику безопасности в рамках отдельно взятой технологии. Например, безопасность AI-системы для генерации текста, выстраивается процессом шифрования при передаче данных, работой с законодательными нормативами этики ИИ и работы с персональными данными, внедрением инцидентного реагирования нейросети на внешние атаки.
Войти в профессию возможно обладая навыками программиста, чтобы разрабатывать методы интеграции со сторонними приложениями нейронной сети, прорабатывать и описывать в коде безопасные алгоритмы, создавать инструменты систем мониторинга для обнаружения аномалий, анализировать и тестировать код нейросети. Также здесь понадобится дополнительно изучить технические аспекты в сфере общей кибербезопасности:
- виды атак;
- методы защиты существующие на рынке;
- тренды в информационной безопасности.
Эти знания сложно получить на курсах и тренингах, поэтому придется приложить много усилий для изучения своими силами. Отработать знания на практике можно самостоятельно, к примеру, использовать ChatGPT для того, чтобы интегрировать его языковые модели с телеграмм-чатами или даже сайтами.
Solution-архитектор
Специалист отвечает за всю IT-архитектуру предприятия: микросервисную и облачную. У Solution-архитектора широкий перечень задач, он служит связующим звеном между технической командой и бизнес-пользователями.
Главная задача - спроектировать архитектуру таким образом, чтобы в ней была высокая производительность, поэтому такой специалист востребован в процессе разработки любого программного обеспечения, и внедрения информационной системы.
Занять эту позицию может либо ИТ-архитектор, либо разработчик, который способен разбираться в таких популярных технологиях, как микросервисные архитектура, облачные сети, архитектура интернет вещей и больших данных. Плюсом к трудоустройству будет наличие одного из профессиональных сертификатов: AWS, Google Cloud, Cisco или Microsoft Azure. Это сильно увеличит шансы занять желаемую должность.
Если же нет возможности пройти сертификацию, то стоит уделить время самостоятельному изучению паттернов, которые активно используются в построении архитектурных решений. Эти паттерны помогают организовать код, обеспечить его читаемость и обслуживаемость, а также упростить решение определенных архитектурных задач.
ML-инженер
Эта профессия набрала небывалый оборот за последние два года. ML-инженер способен внедрять модели машинного обучения для совершенно разных задач. К примеру, построение системы рекомендаций для социальных сетей или же обработка большого количества данных для роботизации цехов на промышленных предприятиях. Метод используется почти во всех отраслях: медицина, финансы, производство, маркетинг, транспорт и другие.
В обязанности такого специалиста входит разработка и внедрение машинного обучения, выбор алгоритмов под конкретные задачи, и непосредственно обучение модели, её оптимизация и настройка на лучшие результаты, проведение валидации и тестирование работоспособности. Не менее важным в профессии является умение работы с данными для быстрого сбора, очистки и агрегации в ML-модель.
Чтобы стать ML-инженером, потребуется комбинация...