Здравствуйте, уважаемые посетители моего канала!
Ну, вот и свершилось: ФИПИ наконец-то представил на общий суд демоверсию ОГЭ по математике. И, казалось бы, по заверениям самого ФИПИ экзамен по математике не имеет никаких изменений:
Но не всё так просто. Самое интересное нас ожидает, когда мы открываем демонстрационный вариант и в инструкции к нему обнаруживаем следующее:
То есть выходит, что на ОГЭ по математике совершенно законно теперь разрешён непрограммируемый калькулятор!
Конечно, представленные материалы - это пока ещё только проект, который в конечном итоге может выглядеть совершенно по-другому. Также не совсем понятно: добавлена в инструкцию данная фраза с калькулятором всё-таки случайно (например, копировали какую-то другую инструкцию) или умышленно? Если это всё-таки сделано специально, то чувствуется, что сделано это как-то уж очень осторожно.
Из оправдательных аргументов в пользу такого странного нововведения могу только назвать в ОГЭ по математике достаточно неприятные вычисления (хотя я бы всё равно назвал их терпимыми) в первых 5 практико-ориентированных заданиях. И, разумеется, в жизни большинство людей непременно бы провело такие вычисления на калькуляторе. Однако из инструкции следует, что его можно применять для любых заданий. И в этом главная проблема!
Я изучил задания той же демоверсии и обнаружил, что разработчики об этом, казалось бы, подумали и поэтому, например, изменили формулировку задания с вычислениями для того, чтобы дети не смогли применить калькулятор:
Однако я хочу Вас спросить: "Какой калькулятор Вы себе представляете, когда слышите термин непрограммируемый?" Уверен, что большинство представит себе вариант, который был на картинке выше.
Однако сам термин "непрограммируемый калькулятор" означает, что в нём нет функций связи и передачи информации с внешними устройствами, нет хранилища базы данных и доступа к сетям передачи данных.
Поэтому непрограммируемый калькулятор может выглядеть не только так, как мы с Вами привыкли. В магазинах мы можем найти так называемый научный непрограммируемый калькулятор, например, такой:
И вот теперь становится очевидно, что если ученик принесёт на экзамен такой калькулятор (а запретить его нельзя, т. к. он непрограммируемый), любые вычисления (даже с корнями) становятся элементарными.
Хорошо, допустим, счёт экзамен больше не проверяет. Тогда, может быть, он проверяет другие предметные знания и умения по математике. Но вспомним про объёмные справочные материалы, которые есть в КИМах ОГЭ и элементарные задания, для решения которых нужно посмотреть в справочные материалы и найти нужный факт. Вместе с обесцененным счётом проведение ОГЭ по математике совершенно теряет смысл.
Безусловно, я уверен, что данная инициатива с использованием калькулятора на экзамене по математике заставит людей разбиться на 2 лагеря: те, кто только облегчённо выдохнет и обрадуется (с математикой у них взаимная нелюбовь), и те, кто скажет, что падение образования продолжается. Лично я занимаю позицию второго лагеря и считаю, что неоправданное использование любой вычислительной техники на экзамене по математике - это настоящее вредительство! Учитывая, что экзамен задаёт требования к результатам обучения, многие подумают, что счёт теперь перестаёт быть одним из таких результатов на выходе из основной школы. А дети только ещё больше расслабятся и будут думать, что учиться считать теперь тоже не надо.
Конечно, обучение счёту - не главная задача при обучении математике. Однако и отрицать полезность и важность самостоятельного счёта тоже неправильно! В чём же вообще состоит преимущество обычного счёта по сравнению с калькулятором?
Во-первых, это концентрация внимания. Думаю, никто не будет спорить, что даже простое вычисление в столбик требует от человека полного сосредоточения на процессе.
Во-вторых, при правильно организованном процессе счёта тренируется оперативная память, т. е. память, в которой удерживается информация, необходимая для выполнения определённой работы.
В-третьих, некоторые процессы самостоятельного вычисления в отличие от пользования вычислительной техники способствуют развитию наблюдательности. Например, если задуматься на умножением 91 на 89, то можно заметить, что здесь применима формула разности квадратов:
91 * 89 = (90 + 1)(90 - 1) = 90^2 - 1^2 = 8100 - 1 =8099.
Ученые уже давно отметили, что умение считать в уме позволяет приостановить склероз и симптоматику заболевания Альцгеймера.
Не возникнут ли дополнительные проблемы с памятью, вниманием, интеллектом у детей, если мы полностью перейдём на вычисления с помощью калькулятора? Думаю, что возникнут.
Считаю, что если мы всё-таки говорим про экзамен по математике, то не надо превращать его в экзамен по физике (где действительно ужасные вычисления, а потому калькулятор в помощь). Если мы говорим про успешность в выполнении задач по математике, то она должна заключаться во всех предметных умениях, в том числе и в умении выполнять правильные вычисления.
А как Вы считаете: нужен ли на экзамене по математике калькулятор? Пишите свои ответы в комментариях.
P. S. А если Вам понравилась эта публикация, поставьте свой лайк и подпишитесь на мой канал! Заранее спасибо.