Цикл статей о расчете источников питания, блоков питания, стабилизаторов, защите от КЗ, перегрузок и их практическое исполнение и применение.
⚠️ Схема простейшего транзисторного стабилизатора напряжения:
- Iк — коллекторный ток транзистора
- Iн — ток нагрузки
- Iб — ток базы транзистора
- IR — ток через балластный резистор
- Uвх — входное напряжение
- Uвых — выходное напряжение (падение напряжения на нагрузке)
- Uст — падение напряжения на стабилитроне
- Uбэ — падение напряжения на p-n переходе база-эмиттер транзистора
Как такой стабилизатор работает и чем его работа отличается от работы параметрического стабилизатора на стабилитроне?
Да почти ничем их работа не отличается, — напряжение на выходе схемы остаётся стабильным в результате наличия на вольт-амперных характеристиках (стабилитрона и p-n перехода база-эмиттер транзистора) участков, на которых падение напряжения слабо зависит от тока. То есть как и у всех параметрических стабилизаторов стабильность достигается внутренними свойствами компонентов.
Действительно, как видно из рисунка, падение напряжения на нагрузке равно разности падений напряжений на стабилитроне и на p-n переходе БЭ транзистора. Поскольку падение напряжения на стабилитроне слабо зависит от тока (на рабочем участке оно равно напряжению стабилизации), падение напряжения на прямосмещённом p-n переходе тоже слабо зависит от тока (для кремниевого транзистора его можно взять примерно таким же, как для обычного кремниевого диода — примерно 0,6…0,7 Вольт), то получается, что и выходное напряжение тоже постоянно.
Теперь добавим немного математики.
С напряжением на нагрузке (выходным напряжением) уже всё понятно: Uвых=Uст-Uбэ, давайте рассчитаем Rо и область нормальной работы стабилизатора. Но прежде нарисуем рядом два рисуночка — кусок (часть) схемы нашего стабилизатора и кусок (часть) простейшего параметрического стабилизатора на стабилитроне:
Похоже, не правда ли? Более того, рассуждения и выводимые из них соотношения для расчёта Rо и области нормальной работы тоже очень похожи.
Уравнение, описывающее токи и напряжения для "выдранного" выше куска схемы нашего стабилизатора:
Uвх=Uст+IR*Rо, учитывая, что IR=Iст+Iб, получим
Uвх=Uст+(Iст+Iб)*Rо (1)
Для нормальной работы стабилизатора (чтобы напряжение на стабилитроне всегда было в пределах от Uст min до Uст max) необходимо, чтобы ток через стабилитрон всегда был в пределах от Iст min до Iст max. Минимальный ток через стабилитрон будет течь при минимальном входном напряжении и максимальном токе базы транзистора. Зная это, найдём сопротивление балластного резистора:
Rо= (Uвх min-Uст min) / (Iб max+Iст min) (2)
Если учесть, что в нашем случае, когда транзистор включен по схеме с общим коллектором, ток базы связан с током эмиттера соотношением Iэ=Iб(h21э+1), ток эмиттера равен току нагрузки (потому что в цепь эмиттера же у нас нагрузка включена), а напряжение на стабилитроне в рабочем режиме меняется незначительно (вместо Uст min возьмём просто Uст), то получим, что
Rо= (Uвх min-Uст) / (Iн max/(h21э+1) +Iст min) (3)
h21э+1 — это коэффициент усиления по току для схемы с общим коллектором (h21к), но поскольку h21э обычно достаточно большой, то нередко слагаемое «+1» выкидывают и считают, что h21к=h21э, тогда формула (3) становится чуть проще:
Rо= (Uвх min-Uст) / (Iн max/h21э+Iст min)
Максимальный ток через стабилитрон будет течь при минимальном токе базы транзистора и максимальном входном напряжении. Учитывая это и сказанное выше относительно минимального тока через стабилитрон, с помощью уравнения (1) можно найти область нормальной работы стабилизатора:
Из этой формулы хорошо видно преимущество такого транзисторного стабилизатора над параметрическим стабилизатором на стабилитроне — при прочих равных параметрах у транзисторного стабилизатора выходной ток может меняться в более широких пределах.
Для примера опять возьмём стабилитрон КС147А (Iст=3...58мА), и прикинем, на какой максимальный ток мы сможем рассчитывать при понижении напряжения с 6...10В до 5В при условии, что выходной ток может меняться от нуля до Imax. Транзистор возьмём КТ815А (h21э=40). Решив совместно систему уравнений (3), (4), получим Rо около 110 Ом и максимальный ток порядка 580 мА и понятное дело нужен теплоотвод.
Однако стоит заметить, что нестабильность выходного напряжения в данном случае будет ещё хуже, поскольку теперь к нестабильности напряжения на стабилитроне добавится ещё нестабильность падения напряжения на p-n переходе транзистора. Плюс мы ещё не учли, что выходное напряжение будет меньше, чем на стабилитроне на величину падения напряжения на p-n переходе, так что по-хорошему нам бы надо было взять стабилитрон не на 4,7В, а на 5,1 или даже на 5,6 Вольт (я специально взял для примера такой же стабилитрон, как и в статье про параметрический стабилизатор на стабилитроне, чтобы нагляднее было видно насколько при одном и том же стабилитроне будет отличаться ток нагрузки).
Собственно, методы борьбы с нестабильностью здесь совершенно аналогичные — нужно как-то уменьшить нестабильность напряжения на стабилитроне. Для этого можно, как и в прошлый раз, взять более узкий рабочий участок ВАХ стабилитрона. Это естественно, также приведёт к сужению области нормальной работы (потому что диапазон изменения рабочего тока стабилитрона уменьшится), но в данном случае, когда область нормальной работы и так шире, чем у параметрического стабилизатора на стабилитроне (примерно в h21э раз), мы вполне можем себе позволить отказаться от части диапазона выходного тока и/или части диапазона входного напряжения ради увеличения стабильности выходного напряжения.
Ещё больше увеличить область нормальной работы можно, если использовать два транзистора, включенные по схеме Дарлингтона (рисунок слева) или Шиклаи (справа). В этом случае h21э будет гораздо больше.
Ну и самый писк — сделать компенсационный стабилизатор напряжения на операционном усилителе, поскольку коэффициент усиления ОУ не просто больше, а значительно, гораздо, во много — много раз больше, чем у любого транзистора (соответственно, мы сможем в ещё более узком диапазоне менять ток через стабилитрон, получим ещё меньшее изменение напряжения на нём и, как следствие, — ещё более стабильное выходное напряжение).
Есть другой вариант — можно вместо обычного стабилитрона взять интегральный стабилитрон, например, TL431. В этом случае, кроме значительно меньшей нестабильности, получим ещё и возможность регулирования выходного напряжения.
⚠️ На закуску скажу, что лёгким движением руки такой стабилизатор напряжения можно превратить в стабилизатор тока (нужно просто стабилизировать напряжение не на нагрузке, а на специальном токоизмерительном резисторе). ⚠️