Математичка очень любила отдыхать на море. Она с мужем приезжала на турнир по настольному теннису среди ветеранов в Турцию. Пока муж успешно участвовал в соревнованиях, математичка плавала, загорала, рассматривала камешки на берегу Средиземного моря. Какие они разнообразные по форме, цвету, рисунку на поверхности! Но однажды ей попался удивительный камень. Математичка посмотрела на него и поразилась. Просто ахнула. Весом поменьше килограмма, толщиной 1,5-2 сантиметра, округлой формы. На обеих поверхностях камня элементы геометрии Евклида. На темно-сером фоне белые полоски удивительным образом расположились в виде параллелограммов, параллельных прямых. Есть секущая, биссектриса внутреннего угла. Можно увидеть трапецию. Есть почти точный равнобедренный треугольник с высотой. Есть почти окружность, овал. Просматривается даже теорема Фалеса, это про угол, пересеченные параллельными прямыми. Математичка смотрела на этот камень и думала, что, возможно, такой же камень ( или прямо этот! ) де