Найти тему
Naked Science

Нижегородские физики придумали, как обойти санкции для развития отечественных квантовых компьютеров

   Нижегородские физики придумали, как обойти санкции для развития отечественных квантовых компьютеров / ©Пресс-слжуба ННГУ
Нижегородские физики придумали, как обойти санкции для развития отечественных квантовых компьютеров / ©Пресс-слжуба ННГУ

С использованием суперкомпьютера ННГУ «Лобачевский» нижегородские физики совместно с учеными МГУ и Российского квантового центра (Москва) разработали новый метод для управления квантовыми объектами — кубитами, альтернативой квантовым разработкам Google и IBM. Это позволяет решить проблему санкционных закупок СВЧ-электроники, необходимой для проведения квантовых вычислений на сверхпроводниках. При этом повышаются скорость и точность операций.

«Построение квантового компьютера — одна из главных научных задач в современном мире. Квантовые технологии смогут решить целый пласт “нерешаемых” задач в химии, логистике, нефтегазовой отрасли, медицине. Мы разрабатываем компактную и энергоэффективную систему управления сверхпроводниковыми кубитами», — сообщила автор исследования, заведующая научно-исследовательской лабораторией теории наноструктур Научно-исследовательского физико-технического института ННГУ имени Н.И. Лобачевского Марина Бастракова.

Первые эксперименты уже стартовали в Российском квантовом центре, ученые разрабатывают технологии для реализации новой схемы управления, а верификацию численных результатов с экспериментом планируют получить уже к 2025 году. Успешные квантовые проекты IT-гигантов Google и IBM реализованы на процессорах из сверхпроводниковых кубитов. Чаще всего они управляются СВЧ-электроникой. Чип с кубитами находится в криостате при температуре, близкой к абсолютному нулю — около -273,12С, при этом минимизируются тепловые шумы и проявляются квантовые свойства индивидуальных микроскопических объектов — кубитов.

  ©Пресс-служба ННГУ
©Пресс-служба ННГУ

Генераторы микроволновых импульсов и линии передач находятся вне криостата при комнатной температуре, поэтому нагрева элементов и энергопотерь не избежать. Большое количество техники и проводов увеличивает количество помех, уменьшая быстродействие и точность квантовых операций. Кроме того, эти условия ограничивают число кубитов в квантовом регистре.

Экспериментальные группы в России также включились в «квантовую гонку» и создают аналоги многокубитных систем. Поиск альтернативных способов управления квантовыми устройствами – приоритетная задача российских ученых. Разработчики из Москвы и Нижнего Новгорода предложили использовать для управления кубитами новую схему сверхпроводникового генератора цифровых импульсов, способных создавать сигналы различной полярности.

«По нашей модели, генераторы цифровых импульсов интегрированы с кубитным чипом и находятся в криостате. Это позволит в перспективе избавиться от проблемы множества “проводов” для управления отдельными кубитами и повысить энергоэффективность процессов. В ситуации, когда ученые борются за каждую наносекунду быстродействия, цифровая сверхпроводниковая схема может ускорить операции примерно в два раза по сравнению с СВЧ-электроникой», — сообщила Марина Бастракова.

На сегодняшний день калибровка сверхпроводниковых квантовых устройств производится практически вручную. Алгоритм ученых ННГУ позволяет рассчитать последовательность импульсов для разных операций с учетом широкого диапазона параметров. Она может быть записана в память генератора, что позволит придать определенную энергию кубиту и получить на выходе нужную квантовую операцию с высокой точностью.

«Разработанный подход должен существенно ускорить выполнение операций в квантовом компьютере, упростить громоздкие системы управления. Это большой шаг вперед для отечественных квантовых технологий, так как он решает проблему нехватки сверхвысокочастотной импортной электроники. Сейчас мы подбираем материалы и разрабатываем дизайн для базовых элементов нашей модели», — рассказал руководитель проекта в рамках программы «Приоритет 2030», профессор физического факультета МГУ имени М. В. Ломоносова Николай Кленов. Исследования проходят в рамках федеральной программы «Приоритет 2030». Результаты опубликованы в ведущем международном издании Quantum Science and Technology.