Найти тему
Simple Prog

NumPy, часть 2: базовые операции над массивами

Оглавление

Всем привет. Продолжаем изучать NumPy. В прошлой части мы научились создавать массивы и их печатать. Однако это не имеет смысла, если с ними ничего нельзя делать.

Python NumPy. Part 2
Python NumPy. Part 2

Сегодня мы познакомимся с операциями над массивами.

Базовые операции

Математические операции над массивами выполняются поэлементно. Создается новый массив, который заполняется результатами действия оператора.

Для этого, естественно, массивы должны быть одинаковых размеров.

Также можно производить математические операции между массивом и числом. В этом случае к каждому элементу прибавляется (или что вы там делаете) это число.

NumPy также предоставляет множество математических операций для обработки массивов:

Полный список можно посмотреть здесь.

Многие унарные операции, такие как, например, вычисление суммы всех элементов массива, представлены также и в виде методов класса ndarray.

По умолчанию, эти операции применяются к массиву, как если бы он был списком чисел, независимо от его формы. Однако, указав параметр axis, можно применить операцию для указанной оси массива:

Индексы, срезы, итерации

Одномерные массивы осуществляют операции индексирования, срезов и итераций очень схожим образом с обычными списками и другими последовательностями Python (разве что удалять с помощью срезов нельзя).

У многомерных массивов на каждую ось приходится один индекс. Индексы передаются в виде последовательности чисел, разделенных запятыми (то бишь, кортежами):

Когда индексов меньше, чем осей, отсутствующие индексы предполагаются дополненными с помощью срезов:

b[i] можно читать как b[i, <столько символов ':', сколько нужно>]. В NumPy это также может быть записано с помощью точек, как b[i, ...].

Например, если x имеет ранг 5 (то есть у него 5 осей), тогда

  • x[1, 2, ...] эквивалентно x[1, 2, :, :, :],
  • x[... , 3] то же самое, что x[:, :, :, :, 3] и
  • x[4, ... , 5, :] это x[4, :, :, 5, :].

Итерирование многомерных массивов начинается с первой оси:

Однако, если нужно перебрать поэлементно весь массив, как если бы он был одномерным, для этого можно использовать атрибут flat:

Манипуляции с формой

Как уже говорилось, у массива есть форма (shape), определяемая числом элементов вдоль каждой оси:

Форма массива может быть изменена с помощью различных команд:

Порядок элементов в массиве в результате функции ravel() соответствует обычному "C-стилю", то есть, чем правее индекс, тем он "быстрее изменяется": за элементом a[0,0] следует a[0,1]. Если одна форма массива была изменена на другую, массив переформировывается также в "C-стиле". Функции ravel() и reshape() также могут работать (при использовании дополнительного аргумента) в FORTRAN-стиле, в котором быстрее изменяется более левый индекс.

Метод reshape() возвращает ее аргумент с измененной формой, в то время как метод resize() изменяет сам массив:

Если при операции такой перестройки один из аргументов задается как -1, то он автоматически рассчитывается в соответствии с остальными заданными:

Объединение массивов

Несколько массивов могут быть объединены вместе вдоль разных осей с помощью функций hstack и vstack.

hstack() объединяет массивы по первым осям, vstack() — по последним:

Разбиение массива

Используя hsplit() вы можете разбить массив вдоль горизонтальной оси, указав либо число возвращаемых массивов одинаковой формы, либо номера столбцов, после которых массив разрезается "ножницами":

Функция vsplit() разбивает массив вдоль вертикальной оси, а array_split() позволяет указать оси, вдоль которых произойдет разбиение.

Копии и представления

При работе с массивами, их данные иногда необходимо копировать в другой массив, а иногда нет. Это часто является источником путаницы. Возможно 3 случая:

Вообще никаких копий

Простое присваивание не создает ни копии массива, ни копии его данных:

Python передает изменяемые объекты как ссылки, поэтому вызовы функций также не создают копий.

Представление или поверхностная копия

Разные объекты массивов могут использовать одни и те же данные. Метод view() создает новый объект массива, являющийся представлением тех же данных.

Срез массива это представление:

Глубокая копия

Метод copy() создаст настоящую копию массива и его данных:

Если вам понравилась статья, подпишитесь на канал и тогда вы точно не пропустите новые части :)

Кстати, часть 3 уже здесь.