12 апреля 2022 года без преувеличения весь мир отпраздновал уже 61 год с момента первого полета Ю.А. Гагарина в космос. В этот день в средствах массовой информации всего мира мы могли видеть многочисленные репортажи, посвященные этому событию. Прозвучали поздравления крупнейших космических корпораций, таких как НАСА. Повсюду мелькали кадры кинохроники, проводились приуроченные к праздничной дате мероприятия… Ничто не изменит значимость этого исторического события, разделившего мир на до и после. Однако наука не стоит на месте. Техника постоянно совершенствуется. Появляются новые технологии, открывающие удивительные перспективы. В данной статье мы попытаемся ответить на вопрос: какие они, современные ракеты-носители?
Твердотопливная Ракета
Все старые ракеты приводились в движение твердотопливными двигателями. Однако теперь появились новые конструкции, более современные виды топлива и функции с использованием твердого топлива. В настоящее время усовершенствованные твердотопливные двигатели в основном используются на разгонных блоках серии Delta и на сдвоенных разгонных блоках "Спейс шаттла".
Твердое топливо может быть изготовлено из многочисленных соединений:
- черного порошка (содержит древесный уголь, серу и нитрат калия);
- цинк-серы;
- нитрата калия;
- композиционных видов топлива на основе нитрата аммония или перхлората аммония.
Поскольку эти ракеты могут быть надежно запущены в короткие сроки, а твердое топливо может храниться в течение длительного периода времени, они часто используются в военных целях. Маленькие ракеты, такие как Nike Hercules и Honest John, и большие баллистические ракеты, такие как Vanguard и Polaris, используют двигатели на твердом топливе. Хотя эти ракеты могут обеспечить высокую тягу при относительно низкой стоимости, они не столь эффективны, как современные ракеты на жидком топливе. Они могут использоваться только для выведения на низкую околоземную орбиту до 2 тонн полезной нагрузки.
Ракета на жидком топливе
Как следует из названия, жидкостные ракеты используют жидкое топливо для создания тяги. В отличие от твердого топлива, жидкие состоят либо из одного, либо из двух химических веществ (бипропелленты). Жидкое топливо в значительной степени предпочтительнее твердого топлива из-за его высокой плотности и высокого массового соотношения для ракеты. Инертный газ хранится в баке двигателя под чрезвычайно высоким давлением для принудительного ввода топлива в камеру сгорания. Хотя двигатели имеют меньшее массовое соотношение, они более надежны и поэтому в основном используются в спутниках для поддержания орбиты.
Жидкие ракеты можно далее разделить на три группы:
1. монотопливные ракеты (с одним топливом);
2. двухтопливные ракеты (с двумя различными видами топлива);
3. трехтопливные ракеты (с тремя видами топлива).
Наиболее популярными являются двухтопливные ракеты, работающие на жидком топливе (углеводороде или жидком водороде) и жидкостном окислителе (жидкий кислород). В ракете может также использоваться криогенный двигатель, в котором и окислитель, и топливо – это газы, которые при низких температурах превращаются в жидкость. Первый зарегистрированный полет такой ракеты состоялся в 1926 году, когда профессор Роберт Х.Годдард экспериментировал с аппаратом, использующим жидкий кислород и бензин в качестве топлива.
Плазменная ракета
В плазменном двигателе тяга создается из квазинейтральной плазмы (где ионы и электроны упакованы в равных количествах). Это тип электрического двигателя, который использует токи и потенциалы (производимые внутри плазмы) для ускорения заряженных частиц в плазме. За последние два десятилетия многие институты работали или в настоящее время работают над плазменными двигателями, включая Иранское космическое агентство, Австралийский национальный университет и Европейское космическое агентство.
Плазменные ракеты могут быть легко построены и использованы не один раз из-за их простой теории работы и дешевого топлива (большое количество газов, а также их комбинации могут быть использованы в качестве топлива). В отличие от обычных химических ракет, плазменные ракеты не используют все свое топливо сразу, что делает их легко пригодными для использования в полете.
Самая большая проблема с плазменными ракетами – это производство достаточного количества электричества для превращения газов в плазму. И из-за их относительно низкой тяги они не подходят для запуска тяжелых спутников. В среднем плазменная ракета может производить примерно 1/2 килограмма тяги. Более того, при использовании плазменных двигателей всегда существует вероятность разрушения ракеты.
VASIMR (переменная удельная импульсная магнитоплазменная ракета) – это новейшие типы ракетных двигателей, работающих на плазме, которые ионизируют топливо в плазму с помощью радиоволн. Одним из многих преимуществ плазменного двигателя является его более высокое удельное значение импульса или Isp, чем у любого другого типа ракет. Хотя плазменные двигатели до сих пор не используются в коммерческих целях, несколько небольших версий уже успешно развернуто и протестировано. В 2011 году НАСА совместно с компанией по производству двигателей, базирующейся в Массачусетсе, запустило в космос на борту экспериментального спутника Tacsat-2 первый в истории подруливающий аппарат Холла (плазменный).
В заключение следует отметить, что c каждым днем все более расширяется сфера прикладного использования космических технологий. Служба погоды, навигация, спасение людей и спасение лесов, всемирное телевидение, всеобъемлющая связь, сверхчистые лекарства и полупроводники с орбиты и самая передовая технология уже являются услугами современности. А впереди - электростанции в космосе, удаление вредных производств с поверхности планеты, заводы на околоземной орбите и Луне.
Космическое будущее человечества - залог его непрерывного развития на пути прогресса и процветания, о котором мечтали и которое создают те, кто работал и работает сегодня в области космонавтики, ракетно-космической техники и других отраслях науки и хозяйства.