Поделюсь опытом по переделке ИБП CyberPower CP900EPFCLCD под недорогие стартерные аккумуляторы для автомобилей (далее по тексту АКБ) вместо штатного AGM аккумулятора. Это Первое.
ВТОРОЕ:
Принцип переделки подходит для большинства ИБП от разных производителей, но с учётом конкретной конструктивной и принципиальной особенности конкретной модели ИБП.
ТРЕТЬЕ:
Сначала будет визуальная первая часть – ПРАКТИЧЕСКАЯ, в фотографиях с пояснениями, после будет вторая часть – ТЕОРЕТИЧЕСКАЯ. В ней будет обоснование, почему я сделал именно так, а не иначе.
ПОСЛЕДНЕЕ:
Я не несу ответственности за Ваши действия и не призываю переделывать имеющееся у Вас оборудование. Я всего лишь делюсь своим личным опытом! Всё, что Вы делаете со своим ИБП, Вы делаете на свой страх и риск !
АККУМУЛЯТОР ДЛЯ ИБП | UPS
Недорогая стартерная АКБ вместо дорогого AGM-аккумулятора
В начале 2000-ых годов ко мне попал ИБП от APC. После пары лет эксплуатации и некоторого разочарования из-за дороговизны стандартного AGM-аккумулятора, я решил пойти своим путём – попробовал интегрировать в ИБП автомобильную Аккумуляторную Кислотную Батарею (АКБ). У меня всё получилось! Через более чем десять лет эксплуатации я решил поделиться своим опытом с общественностью и написал статью о том, как я это сделал.
Почему CyberPower CP900EPFCLCD
Прежде всего зацепил его дизайн. Как же достали коробчонки а-ля старые APC со своим дизайном – низкий, квадратный спереди и ГЛУБОКИЙ. Эта глубина занимает много места из-за чего хочется поставить девайс на морду вертикально. Также бесят разъёмы IEC C13 и C14 вместо обычной розетки.
Особо поразил индикатор с тремя кнопками. Гожий, с возможностью программирования и очень большим количеством разной информации. Также на индикаторе можно увидеть количество эвентов (переходов на питание от АКБ) без подключения к компьютеру.
Помимо "чистого синуса" на выходе, этот ИБП способен держать нагрузку в реальных 900 Вольт-Ампер от ОДНОГО аккумулятора 12 вольт. Таких ИБП единицы. Обычно более 800 ВА ИБП обеспечивают сборкой из двух аккумуляторов соединённых последовательно.
Я всегда скептически относился ко всяким орвалдям, мустекам и прочим либертам со свексами в сегменте SOHO. Насмотрелся на них на работе. Само исполнение (внутренний монтаж, дизайн, качество литья пластмассы и т.д.) этих ИБП отдаёт подвальной китайщиной. Поэтому был приятно удивлён, когда удалось покопаться во внутренностях CP900EPFCLCD. Но цена!.. Печалька :((…
…и вот тут пришёл случай и этот ИБП достался мне гораздо дешевле, чем за него хотят торгаши. Причём даже был выбор из младших и средних моделей линейки. Средняя CP1300EPFCLCD питалась от 2 аккумуляторов соединённых последовательно. Поэтому не задумываясь взял младшую модель.
Первое разочарование
Первым и главным, но единственным разочарованием стал, конечно же, внутренний контролер заряда аккумулятора, заточенный на “поддержание” заряда. Производители аккумуляторов в своих даташитах иногда пишут такую хрень, что просто хочется их спросить – ребята, а вы понимаете вообще химию кислотного источника накопленнной энергии и может вместо аккумуляторов вам заняться выпуском ночных горшков!?… А производители ИБП ориентируются на даташиты производителей аккумуляторов. На лицо ЗАБЛУЖДЕНИЕ! Я очень надеюсь, что это не СГОВОР! То, что мы покупаем аккумуляторы для ИБП не раз в 10 лет, а раз в 2-3 года наводит на такую мысль!
Кстати, только у российских производителей ИБП я видел подробную инструкцию по эксплуатации, в которой есть хоть какой-то раздел об особенностях работы и эксплуатации аккумуляторов. Я этого коснусь в теоретической части более подробно.
Что такое “поддерживающий заряд”!? Я считаю его грубейшим нарушением технологии заряда АКБ. Так называемая “поддержка АКБ в заряженном состоянии” сводится к обычной “долбёжке” аккумулятора в состоянии недозаряда зарядным током с пониженным напряжением. Такая “долбёжка” держит аккумулятор в напряжённом состоянии где-то на уровне 80-90% заряда и не только бесполезна, но и вредна! для аккумулятора. От этого всплывает куча болячек, которые убивают аккумулятор за 2-3 года. Я это обосную в теоретической части этой статьи! Хотя все эти трудности обходятся внешней зарядкой АКБ.
Ну а теперь приступим к пошаговой переделке ИБП под АКБ своими руками.
ЧАСТЬ ПЕРВАЯ, ПРАКТИЧЕСКАЯ
Замена штатных проводов
Выпаиваю штатные провода.
Выпаивать штатные провода нужно БЫСТРО и ОСТОРОЖНО. Площадь сечения проводов достаточно большая, поэтому паяльник нужен достаточно мощный. Прогреть их до температуры выпайки нужно как можно быстрей, чтобы не перегреть дорожки на плате. Если перегреть дорожки – они отслоятся от текстолита. Ни в коем случае не греть более 4-5 секунд. Если не получилось – откусить кусачками перед выпайкой. Также при выпайке не прилагать усилие по вытягиванию проводов. Они должны вытянуться без усилия.
Чищу плату от остатков олова и флюса.
Самый лучший для этого компонент – спирт. Также можно это делать жидкостью для снятия лака для ногтей, но не каждой. После чистки оцениваю состояние отверстий, их диаметр. У меня на плате всё красиво – гильза, cоединяющая слои платы целая, дорожки не отслоились. Значит всё в норме. Примечаю где плюс и где минус. Плюс идёт на три предохранителя по 40 ампер каждый, соединённых параллельно. Прикидываю, какие токи проходят по проводам. Около 100 ампер.
Изучаю выпаянные штатные провода.
Чёрный “-“, красный “+”. Видно: длина каждого 30 см, общая длина – 60 см; сечение 10AWG, что в переводе на родную СИ составляет 5,26 кв.мм. Подбираю ближайший по сечению провод в БОЛЬШУЮ сторону. Я взял советский в синей изоляции (на фото внизу) площадью 6 кв.мм. При этом я сделал их максимально короткими. У меня получилось по 20 см каждый! Итого – 40 см общая длинна. Производитель сделал провода так, чтобы они вытаскивались вместе со штатным AGM аккумулятором. Это нужно для того, чтобы можно было использовать AGM аккумуляторы с разной посадкой выводных клемм. Я сделал так, чтобы АКБ “вдвигался” в провода.
Сохраняю возможность подключения штатного аккумулятора.
Изначально я поставил себе задачу сохранения возможности подключения штатного AGM-аккумулятора. Это не только Power Bank на 220 вольт с чистым синусом на выходе и на нагрузку больше 300 ватт! В дальнейшем это возможность подключить в схему ионистор (суперконденсатор) или блок высокоёмкостных конденсаторов параллельно внешней АКБ. Также можно попробовать встроить ЗУ для АКБ вместо штатного аккумулятора. В общем поле для экспериментов.
Делаю монтаж проводов для внутреннего аккумулятора.
В этом ИБП штатный аккумулятор вставляется в “коробочку”, которая в свою очередь вставляется в сам ИБП. Использую этот бонус от инженеров CyberPower для своих нужд. Провожу провода по коробочке и закрепляю их силиконовым клеем. Если понадобится сделать такие же под другой AGM аккумулятор, это всё легко перемонтируется. Получилась вот такая конструкция.
Стоит отметить, что советский провод оказался довольно жёстким. Количество жилок в нём меньше, но они толще. В моём случае это не было недостатком, а наоборот – стало достоинством. Провода стоят жёстко и не норовят “убежать”. Поэтому перевернув ИБП, аккумулятор встанет в контакты под собственным весом. Здесь пришлось выверять всё с точностью до миллиметра.
“Коробочка” с вставленной батареей YUASA в сборе.
Штатный аккумулятор в “коробочке” с проводами. Стоит отметить, что у разных производителей однотипных аккумуляторов клеммы от края могут находится на разных расстояниях. Хотя производители AGM аккумуляторов стараются придерживаться стандартов по длине, ширине, высоте для аккумуляторов типично-стандартной ёмкости, попадаются экземпляры разных размеров.
А вот клеммы могут “гулять” по расстояниям от краёв и между собой у разных производителей гораздо чаще, чем размеры самого аккумулятора. Так что это стоит учитывать. У меня провода получились толще и короче штатных. А на токах свыше 50 ампер это имеет очень большое значение!
Делаю “полочки” для “сапожков”.
Теперь мне понадобился вот такой наборчик.
Клеммы под болт с гайкой М6. Красная и чёрная термоусадочная трубка. Медный провод диаметром 2,24 мм для обмоток статоров асинхронных двигателей и роторов коллекторных двигателей. Взял самый толстый из своих загашников марки ПЭТВ-2 ( одна из моих специальностей – обмотчик коллекторных электродвигателей).
Хочу обратить внимание на гайку. Она с засечками. Только такая и никак иначе! Такая гайка “уцепившись” не провернётся. Справа на трансформаторе стоит “сапожок”. Я сделал один красный, другой чёрный.
Делаю контакты для соединения двух пар проводов.
Теперь я подошёл к самому главному – обеспечению ХОРОШЕГО контакта для внешней АКБ. Как у меня это получилось, при помощи наборчика, видно на этой фотографии.
Все “полочки”, “сапожки” и клеммы я отметил красной и чёрной термоусадочной трубкой. Площадь соприкосновения контактов большая. Клемы гладкие и без погнутостей. Болт с гайкой М6 позволит крепко прижать все клеммы. Толщина клемм 3 мм. Внутрь клемм я вставил 4 провода ПЭТВ-2 диаметром 2,24 мм, предварительно очистив их от эмали, залил флюс, а потом жидкое олово. Когда всё остыло, очистил от флюса и впаял в плату получившиеся контакты-полочки.
Провода подготовлены.
Осталось их закрепить к клеммам-полочкам. Внизу “полочек” клеммы внутреннего AGM аккумулятора, вверху – провода для внешнего аккумулятора с клеммами-сапожками. Гайки с насечками позволят не пользоваться вторым ключом. Достаточно крутить болт головкой сверху, придерживая клемму рукой.
Провода для внешнего АКБ.
Подбирая клеммы и провода я учитывал то, что провод для внешнего АКБ будет сечением как минимум 16 кв.мм. Подробней об этом будет рассказано во второй части – теоретической. Пока же смотрим, что получилось.
Общая длина проводов от АКБ – около 45 сантиметров. А это неожиданно хороший результат. Я долго думал, как реализовать правило: “ЧЕМ КОРОЧЕ И ТОЛЩЕ – ТЕМ ЛУЧШЕ!” Придумывал схемы с шунтом, реле, и кучей свистелок и перделок. Но решение оказалось элегантно и просто. Об этом чуть ниже.
Провода подсоединены и затянуты гайками на болтах.
Сначала я делал шинки из четырёх медных проводов диаметром 2,24 мм, выводил их наружу. Шунт для амперметра навешивал на АКБ. Ох уж этот чёртов шунт !!! Как вспомню, так вздрогну! Ведь контролировать процессы для меня важная необходимость. Но всё как-то не нравилось, было халявно и колхозно. Как-то зашёл в электротехнический магазин и наткнулся на эти самые “сапожки”. Разных диаметров, разных калибров и углов изгиба площадки с отверстием.
И увидев девяностоградусные – меня осенило. Идея созрела моментально. Вот так и получилось то, что представлено на фотографиях.
Опять забегая вперёд скажу – обошёлся без шунтов с амперметрами и вольтметров. Об этом всё там же – ниже.
Высверливаю в корпусе два аккуратных отверстия.
Чтобы подключить к ИБП АКБ, нужно вывести провода наружу. Для этого делаю два аккуратных отверстия в боковой крышке. При этом стараюсь чтобы отверстия совпали с выводами, провода не изгибались внутри ИБП (были максимально соосны относительно этих отверстий) и были без зазоров в боковой крышке корпуса. Сверло брал точного такого диаметра как диаметр провода.
Провода вошли в отверстия плотно и коэффициент трения резиновой изоляции о стенки отверстия получился достаточно высоким. А это значит, что при рывках за провод будет маленькая нагрузка на клеммы-полочки в плате. Хотя можно поставить ограничители, из тех же пластиковых стяжек-хомутов с внутренней стороны стенки корпуса. Ну и в итоге заключительный штрих переделки – сборка из всех цацек готового ИБП.
ВНИМАНИЕ !!!
НИКОГДА, НИ ПРИ КАКИХ ОБСТОЯТЕЛЬСТВАХ, НЕ ПОДКЛЮЧАЙТЕ ВМЕСТЕ ВНУТРЕННИЙ И НАРУЖНЫЙ АККУМУЛЯТОРЫ !!!
Проверка внутреннего аккумулятора
Собираю корпус и тестирую.
После того как все провода внутри подключил, через два отверстия вывел провода для АКБ – собрал корпус. Все внутренние манипуляции закончены. ИБП готов питаться как от внутреннего, так и от наружного аккумулятора. Проверяю напряжение на штатном аккумуляторе, НЕ ВКЛЮЧАЯ ИБП. 12,87 вольт – норма.
Теперь включаю ИБП для самотестирования. Напряжение упало до 12,5 Вольт. Тоже в пределах нормы.
Обращаю внимание на нюанс AGM аккумуляторов. У них у всех напряжение покоя ПОЛНОСТЬЮ ЗАРЯЖЕННОЙ выше 13 вольт из-за повышенной плотности электролита и низкого тока саморазряда. Эта Юаса (YUASA) разряжена. Я её использую для разных экспериментов, поэтому точно это знаю.
Теперь тестирую штатный аккумулятор нагрузкой.
Подключаю тест – дощечку с лампами. Первая лампа 500 Вт, вторая и третья по 75 Вт. ИБП запустился, нагрузку держит. Напряжение упало до 12,05 вольт.
Забегая вперёд скажу, что этот ИБП условно бережно относится к AGM-аккумуляторам по разрядному току на высоких нагрузках. При полной нагрузке в 500 Вт он отключает AGM-аккумулятор уже при 11,5 вольтах. Т.е. сразу угробить её глубоким разрядом он не даст. Это плюс.
Фактически ИБП с AGM-аккумулятора забирает 75 ампер при нагрузке 500 Вт. А для такой маленькой ёмкости это практически КЗ. А это минус.
В даташите Юасы сказано, что её ёмкость при 20-ти часовом разряде до 10,5 вольт 8,5 АЧ, а при 10-ти часовои разряде до 10,8 вольт 7,42 АЧ. Также там есть интересные цифры по максимальным токам разряда. 105 ампер – одна секунда, 42 ампера – одна минута. Фактически же мы получаем ток в 75 ампер около минуты.
К этому вопросу я ещё вернусь в теоретической части. А пока смотрим, как напряжение скачком поднялось до 12,43 вольт после отключения нагрузки:
Проверяю внутренний контролер заряда ИБП.
Сетевой шнур отключен. Подключаю вольтметр, амперметр, включаю ИБП кнопкой и смотрю ток холостого режима.
Это сколько потребляет сама схема ИБП от аккумулятора (без потребителей 220 вольт). При 12,00 вольтах – 2 с хвостиком ампера. Кстати индикатор самого ИБП показывает, что Юаса разряжена больше половины. Достаточно точно показывает. Выключаю ИБП кнопкой. Меняю местами провода на амперметре (чёрный мультиметр). Втыкаю сетевой провод. Вольтметр показывает 12,89 вольт а амперметр 610 миллиампер. Зарядка идёт.
Отмечу, что максимальный ток заряда, который выдаёт контроллер заряда ИБП – чуть больше 700 миллиампер.
Динамика заряда
По мере повышения напряжения ток падает.
Хочу отметить одну важную деталь! При выключенном ИБП (кнопкой на передней панели) ток заряда больше, чем при включенном ИБП (когда ИБП находится в рабочем режиме) приблизительно на 170-180 миллиампер. Так что аккумулятор ИБП зарядит быстрее в выключеном состоянии. Смотрим на фото:
ИБП включен – напряжение заряда 12,96 вольт, ток заряда 340 миллиампер;
ИБП выключен – напряжение заряда сразу возросло до 13,04 вольта, ток заряда 540 миллиампер.
По мере возрастания напряжения заряда ток падает. ИБП выключен – напряжение заряда 13,08 вольт, ток заряда 520 миллиампер. Не буду анализировать эти цифры, но главное ясно – ИБП аккумулятор заряжает.
Процессы заряда и разряда в графиках и таблицах показаны на примере испытания ИБП Кехуа:
ВЫНИМАЮ ШТАТНЫЙ AGM АККУМУЛЯТОР ИЗ ИБП !
Подключение внешнего аккумулятора
По случаю заказал специальные клеммы.
Давно присматривался к ним. Казалось дороговато, но разорился. Их особенность – можно подключить несколько разных проводов. К примеру провод на аккумулятор, вольтметр и провод от зарядки. Очень удобно. Также к ним прилагается бонус в виде прозрачных изоляционных колпаков из оргстекла.
Это похоже на РБД.
Все винты под шестигранники разных номиналов. Два отверстия одинаковые под AWG8 (8,35 кв.мм), одно под AWG5 (16,8 кв.мм) и одно под AWG2 (33,6 кв.мм).
Про перевод AWG в мм2 рассказано на СамЭлектрике здесь:
Подключаю внешнюю АКБ. Перед подсоединением клемм АКБ к проводам надеваю вот эту хреновину на провод от минуса.
Искушённый читатель сразу скажет, что это такое!? Это – альтернатива ужасно неудобному шунту. И называется он датчик Холла. Работает по принципу токоизмерительных клещей, только на нагрузку постоянного тока. И это одна из трёх частей измерительного комплекса, который стал моим спасением от костылей, свистелок и перделок. Про него я расскажу далее, в разделе контроля.
Датчик Холла имеет подстройку. Так что отрегулировать показания измерений можно достаточно точно. Подключать его нужно по стрелке. Тогда зарядку АКБ он будет показывать положительным числом, а разряд АКБ отрицательным.
К ИБП подключены: компьютер, два монитора, свитч, часы и бухтелки Sven SPS-699. Всё это хозяйство потребляет около 230 ватт. Кстати, показания у индикатора ИБП очень точные. Нагрузка 2/5 от допустимой (видно на индикаторе ИБП).
На аккумуляторе видна белая коробочка. Это вторая часть измерительного комплекса, подключаемая к датчику Холла. Это: амперметр, вольтметр, ваттметр, таймер, термометр, WiFi передатчик. В общем микропроцессорный измерительный комплекс с беспроводной передачей данных. Подробней о нём далее.
Контролируем разряд и заряд. Измерительный комплекс VAC8010F-80V
Далее третья часть измерительного комплекса – дисплей. Прибор этот я видел давно, но не мог предположить, что он настолько крут! Дисплей состоит из ЖКИ-индикатора с подсветкой и радиомодуля-приёмника.
Потребляет он достаточно много – 110 миллиампер, но и держать включенным его постоянно не обязательно. Дисплей принимает и отображает данные с той самой белой коробочки на АКБ по радиоканалу. В сети есть достаточно хороший обзор его функциональности. Достаточно набрать в поисковике «VAC8010F-80V». Лучший обзор VAC8010F-80V ищите на ixbt.com.
Отмечу только одну деталь: мне повезло, комплекс мне достался с термопарой для измерения температуры. На Алишке продаются в основном без этой функции. Далее будем проводить тесты и смотреть как всё работает при помощи этого дисплея.
А теперь небольшая ложка дёгтя. Прибор перестаёт фиксировать токи меньше 250 миллиампер. Не смотря на заявленные китайцами 100 миллиампер. Отчасти это можно компенсировать подстроечными резисторами на датчике Холла. Но с некоторыми ограничениями. Я обошёл это ограничение другой возможностью прибора!
Измерительный блок (далее ИБ) может питаться как от подопытного аккумулятора, так и от внешнего источника питания. Вставляю в ИБ дополнительный блок питания от сети на 12 вольт 350 миллиампер.
ИБ потребляет всего 22 миллиампера при 12 вольтах, но при зарядке АКБ штатным контролером заряда ИБП на ШИМ-преобразователе VIPer22A эти 22 миллиампера ложатся на плечи этого самого штатного контроллера заряда. Пока всё настраивал заметил, что штатный контроллер заряжает АКБ ровно до 13,65 вольт вне зависимости от входного напряжения сети, как это было в ИБП от APC.
Если подключено что-то постороннее к АКБ, то напряжение понижается. Также напряжение понижается при включении дисплея ИБП. Поэтому исключаю всё, что может влиять на конечное напряжение заряда. Делаю питание ИБ от 220 вольт. Его втыкаю в одну из розеток самого ИБП.
Стартовый тест
ИБП выключен, но подключен к сети.
Напряжение на АКБ 13,64 вольта. Температура на инверторе 29 градусов по цельсию. Потребляемый ток ноль. Ток зарядки ИБ не фиксирует, потому что он за пределами его возможностей. Я померил мультиметром. Мультик показал 18 миллиампер. НО!!!
Это мои ПРЕДПОЛОЖЕНИЯ! Так как контроллер VIPer22A достаточно продвинутый и является ШИМ-преобразователем, скорей всего зарядка производится импульсным током! А это другой расклад. У меня нет приборов, способных исследовать зарядный ток, поэтому пишу как есть! Возможно я не прав!
Напряжение на АКБ 13,41 вольт. Температура на инверторе 29 градусов по цельсию. Потребляемый ток ноль.
Тестирую на максимальной нагрузке. КРАШ-ТЕСТ!
Для этого подключаю ту самую тест-досточку с лампами. Напряжение на АКБ 13,41 вольт. Температура на инверторе 29 градусов по цельсию. Потребляемый ток ноль. Включаю 500 ваттную лампу…
Напряжение на АКБ 11,53 вольта. Температура на инверторе 31 градус по цельсию. Потребляемый ток 67 ампер. Это очень большой ток! В нижнем правом углу цифры, отображающие время работы (сессия). Через четыре минуты работы:
Напряжение 11,52, ток 73 ампера, а температура 72 градуса. Мотаю на ус! Как видно АКБ 70 ампер, что слону дробинка. Она даже разряжаться не думает. Напряжение упало на 1 сотую вольта.
А вот ёмкость она отдала: было 57,979АЧ, стало 53,359АЧ, итого 4,620 АЧ. Штатная батарея просто отключилась бы. Ловлю лулзы :))…
Почему ток стал больше, хотя напряжение не упало и мощность такая же?.. Очень просто! Все компоненты нагрелись. Три предохранителя, дорожки на плате, инвертор, выходной трансформатор. Закон дедушки Ома ни кто не отменял. Возросло сопротивление всей схемы из-за существенного нагрева.
Тестирую на нагрузке в 150 ватт после краш-теста.
150 ватт для этого ИБП очень комфортная нагрузка! Напряжение на АКБ 12,89 вольт, зарядный ток около 400 миллиампер. Инвертор остыл до 46 градусов. Отключаю сеть. Жду…
Через 5 минут напряжение 12,26 вольт, ток 15,4 ампера, температура 48 градусов. Оставшаяся ёмкость АКБ 52 АЧ (86 %), приблизительное время разряда на такой нагрузке около 3 часов, 22 минут, 47 секунд. Потребляемая мощность от АКБ 188 ватт. Жду…
Через 20 минут напряжение 12,12 вольт, ток 15,7 ампер, температура 56 градусов. Оставшаяся ёмкость 80%, приблизительное время разряда 3 часа 4 минуты 23 секунды. Достаточно точно просчитывает. В конце разряда это время будет ещё точней. В целом я измерительным комплексом очень доволен!
Зарядку малым током комплекс не фиксирует, но зато позволяет вручную выставить два важных параметра. Ёмкость АКБ и процентный остаток заряда. Этими параметрами можно отъюстировать показания под имеющуюся АКБ, предварительно зарядив её внешней зарядкой. Провод внешней зарядки можно пропустить через датчик Холла. Прибор будет учитывать приходящий к АКБ ток от зарядного устройства. Но во избежании выхода из строя внутреннего контролера заряда ИБП во время заряда АКБ внешним ЗУ следует выключить ИБП кнопкой и отключить от сети!
ВНИМАНИЕ !!!
КАТЕГОРИЧЕСКИ НЕ РЕКОМЕНДУЮ НАГРУЖАТЬ ИБП CP900EPFCLCD ПОЛНОЙ НАГРУЗКОЙ 540 ВАТТ БОЛЕЕ 4 МИНУТ !!!
Штатный AGM-аккумулятор, по заявлению производителя, способен держать нагрузку в 540 ватт одну минуту. За это время внутренние компоненты не успевают нагреться до критической температуры. При подключении внешней АКБ, для использования на полную мощность, необходимо ПЕРЕДЕЛЫВАТЬ систему охлаждения компонентов ИБП, а некоторые компоненты, возможно, придётся заменить на более мощные!
ЧАСТЬ ВТОРАЯ, ТЕОРЕТИЧЕСКАЯ
Длина и сечение проводов.
В сети достаточно много видеороликов, в которых некие “умельцы” подключают внешнюю АКБ к ИБП посредством проводов 2,5-4 кв.мм и длиной больше двух метров. На нагрузке 5-7 ампер такое прокатит. Предлагаю изучить таблички, которые ясно дают понять, на сколько важны длина и сечение провода при подключении внешней АКБ. Начнём с сечения. Таблица справедлива для длины МЕДНОГО, ОДНОЖИЛЬНОГО провода до 100 метров! На практике для электрического соединения используются 2 провода. Поэтому длину делим пополам.
Когда ИБП питает нагрузку 500 ватт по проводам идёт ток 73 ампера. Из таблицы видно, что сечение провода для такого тока должно быть как минимум 9 кв.мм. Если сечение провода меньше, он начнёт сильно нагреваться (вплоть до оплавления изоляции). 73 ампера безболезненно можно пропустить и по проводу площадью 8 кв.мм. Но длина не должна превышать один метр. Соответственно пара проводов – 50 сантиметров.
И вот тут всё не так просто. Любой провод имеет сопротивление электрическому току. Медный имеет самое маленькое сопротивление, но оно всё равно есть! Из-за этого сопротивления мы получаем следующую картину. На начале провода напряжение одно, а в конец провода приходит более низкое напряжение. И чем длиннее провод, тем больше разница в начале и конце провода. Эта разница называется падением напряжения.
Для моего ИБП 73 ампера – это не предел. Когда напряжение на АКБ падает ниже 10 вольт потребляемый ток возрастает по школьной формуле I=P/U (электрический ток в цепи равен мощности делённой на напряжение). Поэтому я рассчитывал на предельный ток в 100 ампер. Провод должен быть для такого тока как минимум 16 кв.мм! Поэтому я приведу таблицу падения напряжения для сечения провода в 16 кв.мм.
Итак, что мы видим. Первая строчка под амперами то, что получилось у меня. Общая длина обеих проводов у меня получилась меньше 45 сантиметров.
Вторая третья и нижняя строки длина проводов у “умельцев”, которые ставят ИБП на стол (чтобы удобней было снимать “ролеги” для своего ютюбканальчега), а АКБ под стол, чтобы не мешала снимать эти “ролеги”.
У школоты, которая тоже хочет “вести видеоблог”, нет возможности купить провод даже 4 кв.мм, не говоря о 16 кв.мм, потому что он дорогой. Но они идут своим, тернистым путём! Они тырят берут без спроса из батиного гаража ОЧЕНЬ ТОЛСТЫЕ ПРОВОДА для “прикуривания” с преогромными “крокодилами”, выкованными в подвале лавки дядюшки Ляо из консервнобаночной жести неизвестным китайским кузнецом, не догадываясь, что толстая у них только изоляция, а внутри провод сечением 1,5 кв.мм из неизвестного материала, а длина каждого из этих проводов ;)) стопиццот+ метров.
Они с гордостью зажимают кончиками этого крокодила штатную клемму ИБП, предназначенную для штатного AGM-аккумулятора и выносят свои афтаритетныи мнении – “УПС плахой, атакамулятара ниработаит”, при этом подключив к нему свой комп, электроплитку, телевизор, стиральную машину, холодильник, мамину плойку и бабушкин утюг. Или “УПС хароший атакамулятара работаит”, при этом подключив только зарядку от смартофона без самого смартфона, потому что на смартфон идёт съёмка ;)).
Что происходит, если АКБ удалить на 50 см, 1м и 2м от ИБП видно в таблице. Возьмём ток в 80 ампер. У меня падение 4 сотых вольта. На одном метре от ИБП (два провода по одному метру) 0,18 вольта. И на двух метрах 0,35 вольт соответственно. Тот же школьнег скажет – фигня какая, десятые вольта. Ну если это переводить в пиво, даже две десятых (5,2 или 5,4) ни чего не значат! А мы посмотрим на прибор. В краш-тесте видно, что АКБ отдавала 73 ампера целых четыре минуты. Напряжение упало всего на одну сотую вольта. В тесте на 150 ватт АКБ отдавала 15 ампер 15 минут. Напряжение упало с 12,26 на 12,12 одна десятая вольта. Поэтому в АКБ сотая вольта очень существенна.
Теперь опять смотрим в табличку по падению напряжения. Почти 4 десятых вольта. На нагрузке 150 ватт это один час работы. Для АКБ 4 десятых вольта, это ПОЛОВИНА заряда. Полностью заряженная АКБ имеет напряжение покоя 12,7 вольт, а полностью разряженная АКБ имеет напряжение покоя 12,00 вольт. И всю свою ёмкость, которая может достигать сотен ампер-часов, АКБ держит в разности напряжениий заряженного и разряженного состояния всего 0,7 вольта. И если на АКБ, к примеру, 11,5 вольт под нагрузкой, то ИБП будет считать, что на АКБ 11,1 вольт и отключится ГОРАЗДО раньше, хотя её ёмкость не будет израсходована даже наполовину!!! Из этого следует:
Чем больше площадь сечения проводов от АКБ к ИБП и чем короче эти провода – тем лучше!
Хотя если быть предельно объективными, при использовании ИБП под нагрузку до 100 ватт на 220 вольтах, достаточно сечения провода в 6-8 кв.мм. Но вот длинна проводов в любом случае должна быть максимально короткой!
Мощность ИБП и время работы от АКБ
Зачем вообще использовать внешнюю АКБ вместо внутреннего штатного AGM-аккумулятора!? Скептически настроенные граждане всегда задают этот вопрос. Отвечаю, Вам точно нéзачем!
А людям вдумчивым и тем, кто не задаёт бестолковых вопросов может понадобиться в двух случаях. Первый – увеличение продолжительности работы при пропаже питания. Второй – выносливость при некачественном питании. Со вторым случаем всё понятно. АКБ будет работать в условиях, как в автомобиле. Включение на непродолжительное время (от нескольких секунд до минуты несколько раз в день) сродни работы авто в городских условиях. На работу, на обед. После работы в магазин. Всё это время запускаем стартер. Привычные условия работы АКБ и убийственные условия для штатной “батарейки”. В случае требования к увеличению продолжительности работы ИБП от АКБ, нужен точный расчёт. ИБП в RACK стойку с возможностью подключения внешних батарейных блоков я не рассматриваю. Такое оборудование нужно сразу выбирать с возможностью подключения внешних АКБ и в силу своей дороговизны здесь не рассматривается.
В индивидуальном классе и SOHO-сегменте (самые дешёвые), по своему практическому опыту рекомендую, делить мощность ИБП в ТРИ раза. Получим мощность, которую ИБП потянет долговременно. В идеале – 25%! При расчёте мощности следует ориентироваться на ватты. Вольт-амперы используются для расчёта нагрузки цепи (провода, предохранители, розетки, выключатели и т.д.), а также пусковые токи при при замыкании цепи. А вот ватты показывают активную мощность, потребляемую непосредственно оборудованием.
Характеристики в ваттах и вольт-амперах могут различаться. Но могут и совпадать. Например у лампы накаливания они будут одинаковыми. А вот у электродвигателя различаются значительно! Импульсные блоки питания (сейчас используются в 95% оборудования) есть двух типов с PFC и без. PFC – коррекция коэффициента мощности (Power Factor Correction). Такие блоки питания имеют коэффициент мощности близкий к единице. Т.е. потребляемая ими мощность одинакова как в ваттах, так и в вольт-амперах. А вот в блоках питания без PFC коэффициент мощности находится в пределах 0,55-0,65. Поэтому нужно чётко всё рассчитывать.
ПРИМЕР: ИБП может держать нагрузку 540 ватт либо 900 вольт-ампер. Если к нему подключить блок питания с PFC, по вольт-амперным характеристикам блока питания в 700 ВА ИБП выдержит такую нагрузку. А вот по ваттным характеристикам не выдержит. Поэтому ориентируемся на ватты!
В моём ИБП дисплей показывает как ватты, так и вольт-амперы. Если нужно выжать из ИБП хотя бы 80 % мощности для долговременной работы, безусловно, нужно переделывать систему охлаждения компонентов. У меня в CyberPower-е при отдаваемой мощности 500 ватт больше всего грелись: три предохранителя, инвертор, выходной трансформатор. За 4 минуты работы инвертор нагрелся с 30 до 70 градусов. Трансформатор ввиду своей массы греется не так быстро, но до 120 градусов нагреется точно. Даже 3 предохранителя нагрелись свыше 60 градусов. Далее можно увидеть динамику разряда АКБ в реальных условиях, без тест-досточки с лампами.
На первой фотографии 4 разных показания на дисплее: процентная загрузка в вольт-амперах от полной нагрузки, процентная загрузка в ваттах от полной нагрузки, потребляемая мощность в вольт-амперах и потребляемая мощность в ваттах во время 20-тиминутного тестирования.
На второй фотографии 5 скриншотов с показаниями за 20 минут работы ИБП от АКБ. Зафиксировано через каждые пять минут работы. Были подключены: компьютер, два монитора, свитч, освещение (диодная лента). Напряжение упало всего на 0,06 (шесть сотых вольта), температура на инверторе поднялась с 35 до 76 градусов цельсия, АКБ отдала 9,489 АЧ. Индикатор разряда АКБ на ИБП за эти 20 минут как показывал 100% заряда, так и показывает. Как мы видим по ваттным характеристикам ИБП нагружен на 44%. А вот по вольт-амперным на 33%. Как я уже отмечал, ИБП класса SOHO долговременно могут работать на 30-35%, в идеале 25% мощности в ваттах со штатным охлаждением, что и подтверждает измерительный комплекс (конечно есть и исключения).
Производители дешёвых ИБП экономят на всём (детали, охлаждение, расчёты и т.д.). В том числе и на выходном трансформаторе. Это пожалуй самая серьёзная проблема недорогих ИБП. Выходной трансформатор дешёвого ИБП не рассчитан на долговременную работу на полную нагрузку.
Из этого следует:
Полная мощность недорогих ИБП класса SOHO рассчитывается для кратковременной работы! Без переделки охлаждения внутренних компонентов долговременно они могут держать нагрузку до 30-35 % своей расчётной мощности в ваттах!
Достоинства и недостатки одной и нескольких АКБ в ИБП
В мощных ИБП свыше 1000 ВА используются батарейные блоки из нескольких АКБ, соединённых последовательно. Это может быть сборка из 2, 3 или 4 AGM-аккумуляторов. Безусловное достоинство использования соединённых последовательно АКБ – меньшие токи в инверторе. К примеру в моём ИБП при нагрузке 500 ватт ток забираемый с АКБ 70 ампер. Если использовать инвертор на 24 или 48 вольт, ток по проводам будет около 35 ампер и около 17 ампер соответственно. Это существенно облегчает переделку конструкции ИБП под внешнюю АКБ. Тепловые и токовые нагрузки внутри ИБП уменьшаются.
Такой ИБП может работать долговременно на 50-100 % от своей полной расчётной мощности. Также падение напряжения в проводах становится менее ощутимо. Особенно при 4-ёх АКБ, соединённых последовательно. Но использование нескольких АКБ создаёт дополнительные трудности.
Все ИБП, способные питать нагрузку свыше киловатта используют блоки с несколькими аккумуляторами, соединёнными последовательно. Поэтому в таком случае от этих трудностей не уйти. Подобрать АКБ с близкими параметрами достаточно сложно. При старении одной из АКБ придётся менять все АКБ, которые находятся в “блоке” с постаревшей. Суть в том, что при последовательном соединении АКБ во время заряда одна из АКБ будет постоянно недозаряжаться, а какая-то перезаряжаться. Даже в блоке из двух АКБ, не говоря уже о блоке из трёх или четырёх АКБ. Потому что не может быть абсолютно одинаковых АКБ, даже в одной партии с завода, и даже произведёнными в одну смену. Одна из батарей будет стареть чуть-чуть раньше.
Соответственно, если сначала разница их характеристик мизерная, то через несколько лет эксплуатации ИБП разница может стать на столько ощутима, что одна из АКБ будет “кипеть”, а другая недозаряжаться. И если в “старый” блок поставить “свежую” АКБ она моментом “постареет”. Потому что если разница между старыми АКБ в блоке более-менее равномерная, то со свежей АКБ она будет гигантской.
Бороться с этим, конечно, можно. Например заряжать каждый из АКБ отдельно. Использовать зарядку с балансировкой. Ротировать АКБ между собой (при определённых условиях ротация может существенно помочь). Но я лично предпочитаю меньше “возни” по обслуживанию с одной АКБ, чем много с несколькими. Но мои запросы способен удовлетворить одноаккумуляторный ИБП. В любом случае блок из нескольких АКБ будет стоить дешевле, блока из такого же количества AGM-аккумуляторов.
Если бы мне пришлось эксплуатировать систему с двумя и более АКБ, я бы дополнительно поставил бы на каждую из АКБ по очень точному вольтметру (как минимум три цифры после запятой). Отрегулировал бы их показания до высочайшей и одинаковой точности на одной из АКБ и дополнительно контролировал бы разность напряжений между всеми АКБ. При этом можно контролировать динамику заряда и разряда каждой АКБ в блоке и видеть, какая из АКБ набирает и отдаёт заряд быстрее, а какая медленней. Из этого следует:
При использовании ИБП с двумя и более AGM-аккумуляторами возникают дополнительные сложности по подбору АКБ и дальнейшему их обслуживанию, но серьёзно облегчается задача по переходу на внешнее питание от АКБ вместо штатных аккумуляторов. Также возможно использовать 50-100% (в зависимости от номинала инвертора) полной расчётной мощности долговременно против 30-35% у ИБП с одной АКБ.
От Администратора канала СамЭлектрик.ру. Если вам показалось, что статья вырвана из контекста, вам не показалось. Статья - часть большой статьи или цикла статей, опубликованных на блоге СамЭлектрик.ру. Автор - Александр Ткачев из Риги. Полную версию со скачиванием документов и бурным обсуждением смотрите по ссылке.
Статьи на канале СамЭлектрик.ру по теме АКБ и ИБП
------------------------------------
Статья заинтересовала? Лайк, подписка, комментарий!
Подписывайтесь на Дзен СамЭлектрик.ру и заходите на блог www.SamElectric.ru !
Внимание! Автор не гарантирует, что всё написанное на этой странице - истина. За ваши действия и за вашу безопасность ответственны только вы!
Пожалуйста, будьте вежливы и уважайте мнение автора и читателей!
#электрика #акб #аккумуляторы #аккумуляторные батареи #ибп